China supplier High-Quality and Economical Water Cooling High Pressure Air Compressor Hot Sale air compressor for sale

Product Description

High Pressure Electric/Diesel Air Booster/Air Compressor

Introductions:

Our products have complete varieties and specifications. From the compressor type, it is divided into mobile type, fixed type, vehicle-mounted type, skid-mounted type and so on. Compressed media include air, natural gas, liquefied petroleum gas, hydrogen, recycled gas, nitrogen, ammonia, propylene, biogas, coalbed methane, carbon dioxide, etc. From the cylinder lubrication method, it is divided into oil lubrication and oil-free lubrication. From the compression type, it is divided into reciprocating piston type and screw type. Products are widely used in metallurgical machinery manufacturing, urban construction, steel, national defense, coal, mining, geology, natural gas, petroleum, petrochemical, chemical, electric power, textile, biology, medicine, glass and other industries.
 

Main features:

1. The compressor is manufactured by air-cooling and water-cooling technology, with high reliability and long service life.
2. The compressor unit has a high degree of automation. The unit operation is controlled by a programmable controller PLC and is equipped with multiple protections.
3. Automatic shutdown protection, unloading restart, automatic drainage, and alarm for insufficient oil.
 

Flow rate ≤50 Nm³/min
Pressure ≤40 MPa
Medium air, nitrogen, carbon dioxide, natural gas
Control  PLC automatic control
Drive mode  electric motor, diesel engine
Cooling method air cooling, water cooling, mixed cooling
Installation method mobile type, fixed type, vehicle-mounted type, skid-mounted type

Main Technical Parameters:
 

NO.  Model  Rotating Speed
(r/min) 
Intake Pressure
(Mpa) 
Exhaust Pressure
(Mpa)
Exhaust Volume
(Nm³/min)
Dimension (L*W*H)mm Drive Power/Shaft Power(KW) Weight (T) Remark
1 SF-10/150 1330 Atmospheric Pressure 15 10 5500*2000*2300 227/139 6 Stationary Diesel Engine
2 SF-10/150 1330 15 10 7500*2300*2300 227/139 8 Container Skid Mounted Diesel Engine
3 SF-10/250 1330 25 10 5500*2000*2300 227/173 6 Stationary Diesel Engine
4 SF-10/250 1330 25 10 7500*2300*2300 227/173 8 Container Skid Mounted Diesel Engine
5 SF-10/250 1330 25 10 15710*2496*3900 227/173 21.98 Vehicular
6 WF-10/60 1000 6 10 6000*2200*2200 135/110 6 Container Skid Mounted Diesel Engine
7 W-10/350 980 35 10 15710*2496*3900 303/187 21.98 Vehicular
8 WF-0.9/3-120 980 0.3 12 0.9 5100*2000*2350 75/50 5.4 Container Skid Mounted Diesel Engine
9 SF-1.2/24-150 1200 2.4 15 1.2 7500*2300*2415 303/195 8.6 Container Skid Mounted Diesel Engine
10 W-0.86/17-350 1000 1.7 35 0.86 8500*2500*2300 277/151 12 Container Skid Mounted Diesel Engine
11 W-1.25/11-350 980 1.1 35 1.25 8000*2500*2500 185/145.35 15 Container Skidding Motor
12 LG.V-25/150 Screw 2279 Piston 800 Atmospheric Pressure 15 25 7000*2420*2300 355 16 Container Skidding Motor

 

 Model  Flow Pressure  Stages Cooling Type Rotating Speed  Power
m³/min Mpa r/min
SVF-15/100 15 10 1+2 Air Cooling 1150 Diesel series
SVF-18/100 18 10 1+2 1150
SVF-20/120 20 12 1+2 1150
LGW-15/100 15 10 1+2 1150
LGW-15/150 15 15 1+3 1150
LGW-15/200 15 20 1+3 1150
LGW-20/100 20 10 1+2 1150
LGW-20/150 20 15 1+2 1150
LGS-24/150 24 15 1+2 1150
LGS-30/150 30 15 1+2 1150
LGW-25/150 25 15 1+2 Water cooling 980 Electric tandem
LGV-25/250 25 25 1+3 740 Diesel series
LGW-12/275 12 27.5 1+3 980 Electric tandem
LGV-15/85 15 8.5 1+2 980
LGV-15/250 15 25 1+3 Air Cooling 740
LGV-15/350 15 35 1+4 Water cooling 740
LGV-15/400 15 40 1+4 740
LGV-12.5/400 12.5 40 1+4 740
LGV-15/100 15 10 1+2 740

Application Industry:

1. Suitable for oilfield pressure test, line sweeping, gas lift, well drilling and other projects.
2. Used in air tightness testing, air tightness inspection, pressure test, strength inspection, air tightness verification and other fields of various high-pressure vessels or pressure vessels such as gas cylinders, steel cylinders, valves, pipelines, pressure meters, high-pressure boilers, etc. .
3. On-board pressure testing, pressurization, pipeline pressure testing, line sweeping, gas lift and other projects in oil exploration.
4. Sand blasting and rust removal, parts dust removal, high pressure phosphorus removal, anti-corrosion engineering, well drilling operations, mountain quarrying.
5. For hydropower station turbine control and high-voltage power grid air short-circuit device for arc extinguishing.
6. Provide air source for large and medium-sized bottle blowing machines.

Principle: Reciprocating Compressor
Configuration: Portable
Flow Rate: ≤50 Nm³/Min
Pressure: 0.1MPa-40MPa
Medium: Air, Nitrogen, Carbon Dioxide, Natural Gas
Control: PLC Automatic Control

air compressor

What are the advantages of using an air compressor in construction?

Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:

  • Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
  • Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
  • Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
  • Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
  • Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
  • Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
  • Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.

It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.

In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

How does an air compressor work?

An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:

1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.

2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.

3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.

4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.

5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.

6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.

Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.

In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.

China supplier High-Quality and Economical Water Cooling High Pressure Air Compressor Hot Sale   air compressor for saleChina supplier High-Quality and Economical Water Cooling High Pressure Air Compressor Hot Sale   air compressor for sale
editor by CX 2023-10-30