Product Description
Rotary Scroll Air Oil Free Medical Laboratory Compressor (KDR2208)
During the research and development of KDR series rotary scroll oil free air compressor technology, it attach much importance to reducing unnecessary maintenance cost and time and supplying 100% oil free compressed air. Rotary scroll oil free innovation technology avoids the trouble of adding lubricating oil and the risk of existence of oil in rear part of the system. What’s more, time of periodic maintenance is long, normal operation under daily power, easy to operate, unmanned operation at night, these features are essential to your peace of mind and power saving consideration.
Features of CHINAMFG KDR series silenced type rotary scroll oil free compressor
100% oil free compressed air
High efficiency and low operating cost
ontinuous operation for 24 hours
Compact structure and small footprint
Provide users with green air source which is oil-free, odourless, clean and dry
There is no need to add any lubricating oil, so it is environmental friendly
It ensures compressed air free from oil contamination to end products
Provide dentist and dental technicians with reliable high quality compressed air
Maintenance free, fully automation and easy operation100% oil free silenced type rotary scroll air compressor, pioneeringConfiguration:
Every scroll pump head is equipped with separate cooling fan
Every unit is equipped with 2 stage aftercooler and cooling fan
Air pipeline system of every unit is made of stainless steel
It is extensively used in water treatment, bio-pharmaceutical, environmental protection, healthy and epidemic prevention, printing, textile, petrochemical industry, precision electronics, instrumentation, painting, tobacco, nitrogen, optics, national defense scientific research institution and other places where need clear air.
Technical Paremeters
| Model | KDR308 -50 |
KDR408 -50 |
KDR508 -50 |
KDR808 | KDR1108 | KDR1508 | KDR2208 | KDR3308 | ||
| Capacity FAD | m³/min | 0.27 | 0.4 | 0.6 | 0.8 | 1.2 | 1.8 | 2.4 | 3.6 | |
| Discharge pressure | bar(g) | 8 | ||||||||
| Discharge air temp.(ºC) | Ambient temp.+8-10ºC | |||||||||
| Noise level | dB(A) | 60±3 | 62±3 | 63±3 | 64±3 | 66±3 | ||||
| Transmission method | V-blet | |||||||||
| Main motor | Power | kW | 3 | 4 | 5.5 | 8 | 11 | 16.5 | 22 | 33 (5.5×6) |
| (4×2) | (5.5×2) | (5.5×3) | (5.5×4) | |||||||
| Speed | rpm | 1465 | ||||||||
| Power supply | 220V/380V/400V415V/440V/460V 50Hz/60Hz | |||||||||
| Dimensions | L | mm | 800 | 800 | 800 | 1600 | 1600 | |||
| W | mm | 1050 | 1250 | 1250 | 1400 | 1400 | ||||
| H | mm | 1150 | 1250 | 1750 | 1250 | 1750 | ||||
| Weight | kg | 180 | 190 | 210 | 440 | 500 | 700 | 900 | 1200 | |
| Discharge air pipe connection | inch | 1/2″ | 3/4″ | 1″ | 1-1/2″ | |||||
ADEKOM (ASIA PACIFIC) LIMITED founded in the late 90’s is a specialized air/gas compressors and treatment system manufacturer with headquarter in Hong Kong. Its partners located in Vicenza, Italy and Germering, Germany are the world’s leading manufacturers with global recognition and experience in designing, manufacturing and marketing of rotary screw air/gas compressors for decades. QUALITY, RELIABILITY and ENERGY EFFICIENCY have been the main objectives of serving customers all over the world. CHINAMFG follows the company core of its European partners, is committed to the research & development, quality assurance and satisfaction of customers’ needs. Today, what CHINAMFG can do is not just to supply the best products to the market, but to provide THE TOTAL SOLUTION TO YOUR NEEDS!
CONTACT US
Asia Pacific Market: Spencer Lau (Ms.)
European/ Middle Eastern/ African Market: Echo Lok (Ms.)
American Market: Alice Kwok (Ms.)
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Air Cooling |
| Structure Type: | Closed Type |
| Installation Type: | Movable Type |
| Type: | Single Screw Compressor |
| Discharge Capacity: | 2.4 M3/Min |
| Customization: |
Available
|
|
|---|
.webp)
What are the advantages of using rotary vane compressors?
Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:
1. Compact and Lightweight:
Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.
2. High Efficiency:
Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.
3. Quiet Operation:
Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.
4. Oil Lubrication:
Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.
5. Versatile Applications:
Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.
6. Easy Maintenance:
Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.
These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.
.webp)
What is the energy efficiency of modern air compressors?
The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:
Variable Speed Drive (VSD) Technology:
Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.
Air Leakage Reduction:
Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.
Efficient Motor Design:
The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.
Optimized Control Systems:
Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.
Air Storage and Distribution:
Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.
Energy Management and Monitoring:
Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.
It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.
Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.
.webp)
Can you explain the basics of air compressor terminology?
Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:
1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.
2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.
3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.
4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.
6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.
7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.
8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.
9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.
These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.


editor by CX 2023-11-28