Product Description
LPG LNG storage tank LPG compressor Ammonia Reciprocating Piston Compressor
ZW series Oil-Free LPG Gas Compressor, it has many functions, small volume, lightweight, small power, stable and reliable operation, and has good safety performance. It can transport highly volatile liquid such as liquefied petroleum gas and recover the gas left in the tank, Liquid Natural Gas. Due to the unique oil-free lubrication design, there is no need for oil lubrication in the cylinder, so it will not pollute the medium (ensure the purity of gas) and keep the transported substances pure.
Excellent complement, satisfied performance, light weight, small occupying area, more compressing ratio, smooth running, long service life of spare parts, simple operation, reliability and easy maintenance. ZW series compressors have both fixed or movable types; both normal atmosphere (0.1~1.5MPa) and high pressure (1.6~2.4MPa) to meet different requirements of customers.
| LPG Compressor Technical Parameters |
||||
| Model | Flow rate m3/min | Inlet pressure (MPa) | Discharge pressure (MPa) | Motor power (Kw) |
| ZW-0.6/10-16 | 0.6 | 1 | 1.6 | 7.5 |
| ZW-0.8/10-16 | 0.8 | 1 | 1.6 | 11 |
| ZW-1.0/10-16 | 1 | 1 | 1.6 | 15 |
| ZW-1.3/10-16 | 1.3 | 1 | 1.6 | 18.5 |
| ZW-1.5/10-16 | 1.5 | 1 | 1.6 | 22 |
| ZW-2.0/10-16 | 2 | 1 | 1.6 | 30 |
| ZW-2.5/10-16 | 2.5 | 1 | 1.6 | 37 |
| ZW-3.0/10-16 | 3 | 1 | 1.6 | 45 |
| ZW-4.0/10-16 | 4 | 1 | 1.6 | 55 |
| ZW-8.0/10-16 | 8 | 1 | 1.6 | 110 |
| ZW-1.0/1-10 | 1 | 0.1 | 1 | 15 |
| ZW-1.0/2-5 | 1 | 0.2 | 0.5 | 7.5 |
| The above models are commonly used and can be customized according to each industry plant’s different requirements. The above data are calculated according to: Inlet pressure: ≤ 1.0Mpa; Exhaust pressure: ≤ 1.6Mpa; Maximum pressure difference: 0.6Mpa; Maximum instantaneous pressure ratio: ≤6 Cooling mode: air cooling or water cooling (according to end user’s local conditions to design); Inlet temperature: 40ºC; Liquid density of liquefied gas: 582.5kg/m3. |
||||
Main purpose and scope of Application
This series of compressors are mainly used for loading, unloading, tank pouring, residual gas recovery, tank vehicle loading, unloading, bottle filling, bottle emptying, conveying, residue removal and it can be also used in the processes of other petrol-industries, residual liquid recovery and other operations of LPG. They are ideal equipment for liquid transportation and gas recovery. Therefore, it is widely used in LPG storage and distribution station, gas mixing station, gasification station, tank plant, automobile filling station, etc., especially in large, medium and small LPG stations.
In addition, it is suitable for liquid transportation and residual gas recovery of propane, butane, butene and other volatile substances with low boiling point. Its variant products can be used for liquid transportation and gas recovery of propylene, liquid ammonia, etc.
Technical Paramter
| No. | Item | Specification | |
| 1 | Compressor Model | ZW-0.6/10-15 | |
| 2 | Compress medium | LPG Gas | |
| 3 | Structure | Vertical Type, Air Cooking, Single action | |
| 4 | Compress stage number | single stage | |
| 5 | volume capacity (F.A.D) | 0.6 m3/min | |
| 6 | Suction pressure | 1Mpa | |
| 7 | Discharge pressure | 1.5Mpa | |
| 8 | Suction temperature | ≤40ºC | |
| 9 | Discharge temperature | ≤110ºC | |
| 10 | Compressor speed(r/min) | 500 | |
| 11 | Motor Power | 7.5KW ,YB3-132M-4 dIIBT4 | |
| 12 | Cooling method | Air Cooling | |
| 13 | Lubricate method | Crank case, Crankshaft, Connect rod, Crosshead | Splash lubrication |
| Cylinder, filling | Oil free lubrication | ||
| 14 | Driven Method | Belt driven | |
| 15 | Installation | with skid-board | |
| 16 | Noise | 85dB (A) | |
| 17 | Vibration intensity | 28 | |
| 18 | Dimension | about 1220×680×980mm | |
| 19 | Weight | about 360KG | |
| 20 | Scope of supply | Compressor, motor, common underframe, gas pipeline, four-way valve, safety valve, instrument, random spare parts, factory documents, etc. | |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Balanced Opposed Arrangement |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Compress Level: | Single-Stage |
| Samples: |
US$ 2800/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for gas compression and storage?
Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:
Gas Compression:
Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.
Gas Storage:
Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.
Gas Types:
While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:
- Nitrogen
- Oxygen
- Hydrogen
- Carbon dioxide
- Natural gas
- Refrigerant gases
It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.
By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.
.webp)
How does the horsepower of an air compressor affect its capabilities?
The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:
Power Output:
The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.
Air Pressure:
The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.
Air Volume:
In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.
Duty Cycle:
The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.
Size and Portability:
It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.
When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.
Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.
.webp)
How do you choose the right size of air compressor for your needs?
Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:
1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.
2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.
3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.
4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.
5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.
6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.
7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.
8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.
By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.


editor by CX 2023-12-16