Tag Archives: compressor portable

China Good quality Luy180-19 CHINAMFG Manufacturers 19 Bar 635 Cfm Small Compressor Diesel Screw Air Compressor portable air compressor

Product Description

Model Name LUY050-7 LUY085-14 LUY100-10 LUY100-12 LUY118-7 LUY120-14 LUY130-13 LUY150-15 LUY160-17 LUY235-9 LUY220-10
Working pressure, bar(psi) 7 (100) 14 (205) 10 (150) 12 (175) 7 (100) 14 (205) 13(190) 15 (220) 17 (250) 8.6 (125) 10 (150)
Flow, l/s|cfm|m3/min 83|177|5 142|300|8.5 167|353|10 167|353|10 197|420|11.8 200|424|12 217|460|13 250|530|15 267|565|16 396|830|23.5 367|780|22
Noise sound level (at 7m distance, dBA ) 70±3 79±3 79±3 79±3 79±3 83±3 83±3 83±3 83±3 79±3 79±3
Fuel tank capacity, l 67 185 120 120 120 180 180 250 250 300 300
Compressor oil capacity, l 8 25 26 26 26 23 30 32 32 55 55
Outlet valves, qty x size 3xG3/4 3xG3/4 1xG1  1/2 3xG3/4 1xG1  1/3 3xG3/4 1xG1  1/4 3xG3/4 1xG1  1/5 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4
Engine exhuast emission           Tier 3 Tier 3 Tier 3 Tier 3 Tier 2 Tier 2
Engine maker Kubota Cummins Cummins Cummins Cummins Yuchai Cummins Yuchai Yuchai Cummins Cummins
Engine model V1505T 4BTAA3.9-C125 YC4A130-H311 YC4A130-H311 YC4A130-H311 YC6J175-H301 QSB5.9-C180-31 YC6A205-H300 YC6A240-H301 6CTA8.3-C260 6CTA8.3-C260
Engine power, Kw 33 93 96 96 96 129 132 151 176 194 194
Norminal engine speed, rpm 2950 2300 2300 2300 2300 2300 2400 2050 1950 2000 2000
Unloading engine speed, rpm 1950 1500 1400 1400 1400 1400 1400 1200 1200 1500 1500
Engine inspiration torbue charger torbue charger torbue charger torbue charger torbue charger torbue torbue torbue torbue torbue torbue
Length, mm 2960 3700 3700 3700 3700 4322 3000 4322 4322 3780 3780
Width, mm 1350 1790 1790 1790 1790 1950 2000 1950 1950 1950 1950
Height, mm 1420 1900 1900 1900 1900 1980 2190 1980 1980 2260 2260
Weight, kg 750 1650 1650 1650 1650 2250 1990 2550 2550 2990 2990

 

Model Name LUY200-10 LUY170-17 LUY180-19 LUY180-20 LUY210-17 LUY230-14 LUY250-12 LUY270-10 LUY290-9 LUY215-21 LUY290-23
Working pressure, bar(psi) 10(150) 17(250) 19 (275) 20(290) 17 (250) 14 (205) 12(175) 10(150) 8.6(125) 21(305) 23(335)
Flow, l/s|cfm|m3/min 336|706|20 286|600|17 300|635|18 300|635|18 350|745|21 386|815|23 417|885|25 450|955|27 486|1571|29 357|760|21.5 486|1571|29
Noise sound level (at 7m distance, dBA ) 79±3 79±3 83±3 83±3 83±3 79±3 79±3 79±3 79±3 79±3 83±3
Fuel tank capacity, l 300 300 300 325 300 470 470 470 470 512 500
Compressor oil capacity, l 55 55 55 60 55 65 65 65 65 75 75
Outlet valves, qty x size 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4
Engine exhuast emission Tier 2 Tier 2 Tier 3 Tier 3 Tier 3 Tier 3 Tier 3 Tier 3 Tier 3 Tier 3 Tier 3
Engine maker Cummins Cummins Yuchai Cummins Yuchai Cummins Cummins Cummins Cummins Cummins Yuchai
Engine model 6CTA8.3-C260 6CTA8.3-C260 YC6A260-H300 QSB6.7-C260-32 YC6A260-H300 QSL8.9-C325-30 QSL8.9-C325-30 QSL8.9-C325-30 QSL8.9-C325-30 QSL8.9-C325-30 YC6MK340-H300
Engine power, Kw 194 194 191 191 191 242 242 242 242 242 250
Norminal engine speed, rpm 2000 2000 1900 2000 1900 2000 2000 2000 2000 2000 1900
Unloading engine speed, rpm 1500 1500 1200 1300 1200 1300 1300 1300 1300 1300 1300
Engine inspiration torbue torbue torbue torbue torbue torbue torbue torbue charger torbue charger torbue charger torbue
Length, mm 3780 3780 4404 4550 4404 5260 5260 5260 5260 5260 3850
Width, mm 1950 1950 1950 1770 1950 1800 1800 1800 1800 2040 2100
Height, mm 2260 2260 2296 2230 2270 2630 2630 2630 2630 2630 2690
Weight, kg 2990 2990 3330 3920 3330 4835 4835 4835 4835 4850 4100

 

 

After-sales Service: Video Technical Support, Online Support, Spare PAR
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: Diesel Engine
Structure Type: Closed Type
Installation Type: Movable Type
Customization:
Available

|

air compressor

Can air compressors be used for shipbuilding and maritime applications?

Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:

1. Pneumatic Tools and Equipment:

Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.

2. Painting and Surface Preparation:

Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.

3. Pneumatic Actuation and Controls:

Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.

4. Air Start Systems:

In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.

5. Pneumatic Conveying and Material Handling:

In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.

6. Air Conditioning and Ventilation:

Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.

These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.

air compressor

How are air compressors employed in the mining industry?

Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:

1. Exploration and Drilling:

Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.

2. Ventilation and Air Quality Control:

Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.

3. Material Conveyance:

In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.

4. Dust Suppression:

Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.

5. Instrumentation and Control:

Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.

6. Explosive Applications:

In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.

7. Maintenance and Repair:

Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.

It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.

By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.

air compressor

How do oil-lubricated and oil-free air compressors differ?

Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:

Oil-Lubricated Air Compressors:

1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.

2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.

3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.

4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.

Oil-Free Air Compressors:

1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.

2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.

3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.

4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.

When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.

China Good quality Luy180-19 CHINAMFG Manufacturers 19 Bar 635 Cfm Small Compressor Diesel Screw Air Compressor   portable air compressorChina Good quality Luy180-19 CHINAMFG Manufacturers 19 Bar 635 Cfm Small Compressor Diesel Screw Air Compressor   portable air compressor
editor by CX 2023-11-03

China manufacturer Industrial 10HP 200L Portable Piston Belt Driven Air Compressor lowes air compressor

Product Description

Product Description

About company:

HangZhou Shangyang Trading Co., Ltd. is a foreign trade technology enterprise focusing on providing air compressor products. The company has obvious advantages in the whole industry in terms of technical strength, business communication ability and quality control.
The company’s products mainly include air compressor, welding machine, cleaning machine, water pump, motor, etc., sold to more than 80 countries and regions around the world; And long-term for Europe, North and South America and other CHINAMFG brands and end sellers to provide high-quality air compressor products; The cooperation with these customers enables the company’s products to meet the technical and quality requirements of the mainstream markets in Europe and America.
 

Main Features: 

1.Heavy cast iron body: heavy load, long stroke, low fuel consumption, low noise

2.Cylinder: made of high-grade cast iron, strength, good lubricity, wall by the fine honing, wear-resistant, durable

3.Piston ring: good elasticity, excellent wear resistance, low oil consumption, not easy to make the valve group carbon deposition and loss of oil to burn the crankshaft and connecting rod.

4.The crankshaft, connecting rod, piston: well balanced, wear resistance, high strength, smooth running balance.

5.Pressure cast iron pump, can be adapted to use large horsepower;

6.Customers could choose different type of compressor pump with different size of  air tank or different motor power

 Services:

before sales 1.24 hours online service .
2.Any inquiries will be replied within 12 hours.
3.Offer professional machine details and information.
4.Technology knowledge share .
on sale 

1.Protect the client payment security .
2.Reasonable price and ensure quality .
3.Send machine pictures , videos as client need and let client know machine

more better.

after sales 

1.Fast delivery and test and adjust machine working well before delivery.
2.Supply manual book and technical support in order to use well.
3.Offer install pictures step by step or videos and dispatch the engineer.
4.Guarantee time is 1 year.

 

After-sales Service: Overseas Third-Party Support Available
Warranty: 0ne Year
Lubrication Style: Lubricated
Cooling System: Air Cooling
Cylinder Arrangement: Duplex Arrangement
Cylinder Position: Vertical
Customization:
Available

|

air compressor

What is the impact of humidity on compressed air quality?

Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:

1. Corrosion:

High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.

2. Contaminant Carryover:

Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.

3. Decreased Efficiency of Pneumatic Systems:

Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.

4. Product Contamination:

In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.

5. Increased Maintenance Requirements:

Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.

6. Adverse Effects on Instrumentation:

Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.

To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

What is the difference between a piston and rotary screw compressor?

Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:

1. Operating Principle:

  • Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
  • Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.

2. Compression Method:

  • Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
  • Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.

3. Efficiency:

  • Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
  • Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.

4. Noise Level:

  • Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
  • Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.

5. Maintenance:

  • Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
  • Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.

6. Size and Portability:

  • Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
  • Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.

These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.

China manufacturer Industrial 10HP 200L Portable Piston Belt Driven Air Compressor   lowes air compressorChina manufacturer Industrial 10HP 200L Portable Piston Belt Driven Air Compressor   lowes air compressor
editor by CX 2023-11-03

China Standard Similar to CHINAMFG AC Industrial Heavy Duty Tier 3/4 Movable Portable CHINAMFG Diesel Engine Direct Driven Rotary Screw Type Air Compressor with Jack Hammer with high quality

Product Description

DENAIR hot sale series diesel portable air compressors

DENAIR hot sale series diesel portable air compressors
Model Machine Diesel Engine
Free Air Delivery Normal Working Dimensions Weight  Manufacturer  Model Rated
 Pressure (without towbar)         power
  m3/min CFM bar(g) psig L*W*H(mm) kg KW
DACY-3.2/8 3.40  120 8 116 2263*1590*1543 9, China
Our factory is located in No. 366, YangzhuangBang Street, Pingxing Rd., Xindai Town, HangZhou, ZHangZhoug Province, China

Q3: Warranty terms of your machine? 
A3: Two years warranty for the machine and technical support according to your needs.

Q4: Will you provide some spare parts of the machines? 
A4: Yes, of course.

Q5: How long will you take to arrange production? 
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days

Q6: Can you accept OEM orders? 
A6: Yes, with professional design team, OEM orders are highly welcome.

 

Lubrication Style: Lubricated or Oil-Less
Cooling System: Air Cooling/Water Cooling
Power Source: Diesel Engine
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

How are air compressors used in the food and beverage industry?

Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:

1. Packaging and Filling:

Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.

2. Cleaning and Sanitization:

Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.

3. Cooling and Refrigeration:

In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.

4. Aeration and Mixing:

Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.

5. Pneumatic Conveying:

In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.

6. Quality Control and Testing:

Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.

7. Air Agitation:

In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.

It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.

By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.

air compressor

Can air compressors be used for inflating tires and sporting equipment?

Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:

1. Tire Inflation:

Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.

2. Sporting Equipment Inflation:

Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.

3. Air Tools for Inflation:

Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.

4. Adjustable Pressure:

One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.

5. Efficiency and Speed:

Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.

6. Portable Air Compressors:

For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.

It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China Standard Similar to CHINAMFG AC Industrial Heavy Duty Tier 3/4 Movable Portable CHINAMFG Diesel Engine Direct Driven Rotary Screw Type Air Compressor with Jack Hammer   with high qualityChina Standard Similar to CHINAMFG AC Industrial Heavy Duty Tier 3/4 Movable Portable CHINAMFG Diesel Engine Direct Driven Rotary Screw Type Air Compressor with Jack Hammer   with high quality
editor by CX 2023-11-02

China Custom Heavy Duty Industrial Electrical Air Compressor air compressor portable

Product Description

Air Compressor
Stock in Africa,UAE,Singapore

Model HP KW Speed
(RPM)
Capacity Cylinder
(mm)
Max Pressure
(Bar)
Tank
(L)
Package
(L*W*H mm)
Weight
(KG)
LSB3090-250 10 7.5 950 0.97M3/Min 90*3 8 500 1640*640*1130 270
  1. 24 HOURS CONINUOUS RUNNING
     
    The J-compressor can work day and night without pause, because of the round angle modeling air pump and enlarged crankshaft and connecting rod.
     
  2. 20% MORE SUPER DISPLACEMENT
     
    This J-compressor’s s displacement is 20% larger than common compressor, because of the heavy-duty bottom support, larger crank case, 1 processed bearing hole match with CHINAMFG bearing, double valve plate and so on.
     
  3. HIGH QUALITY SPARE PARTS
     
    Equip with pure copper discharge pipe, release pipe and copper check valve spool, imported material triangle belt, enlarged air filter, Swedish screw steel valve clack, higher precision of piston and piston ring, and so on
     
  4. HIGH SAFETY VESSEL
     
    Modern and advanced automatic electrical production line promise excellent quality.
     
    Imported LINCOLN welding machine guarantees the smooth welding without undercut
     
    Weekly hydrostatic burst test uses 5 times design pressure to check steel quality and welding safety.
     
  5. GOOD QUALITY MOTOR
     
    10%-30% more sheet motor staor and rotor. 15% low-voltage start-up is 15% lower than standars voltage of your country. Temperature rises95K to support long time working.

HangZhou CHINAMFG Machinery Co., Ltd., founded in 2008, is an integrated enterprise specilizing in the design, production, sales, and service of auto maintenance equipment. We not only sell products, but also provide project package services, including project layout design, one-stop purchasing, installation and training, have established cooperative relations with many demestic and foreign customers.

We have operations and experience centers in Africa, the Middle East, and Singapore that provide localized services.

Haosail’s products are passed JINGRUI TEST CENTER’s quality management, which can achieve quality traceability and make customers feel at ease.

Our philosophy: Looking CHINAMFG to the establishment of cooperation with customers, including product sales agent, project contract supporting. Haosail, your auto-repair partner from zero to success.

Q: Why to choose Haosail?

1. Compared to the factory which can only provide single product, we can offer you one-stop purchasing, provide whole set of equipment and turnkey solution for your garage.  
 
2. Compared to normal trading company, we have abroad sales stores and professional after-sale team. You don’t need to worry about our company strength, equipment installation and maintenance problems.
 
3. Compared to normal sales company, we have our LOGO on all of our equipment, Uniform color, if you want to start your own business or act as a product agent, we are the best solution for your investment.

Classification: Variable Capacity
Job Classification: Reciprocating
Transmission Power: Dynamoelectric
Cooling Method: Air-cooled
Cylinder Arrangement Mode: Symmetrical Balance
Cylinder Stage: Single Stage
Customization:
Available

|

air compressor

What are the advantages of using an air compressor in construction?

Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:

  • Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
  • Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
  • Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
  • Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
  • Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
  • Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
  • Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.

It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.

In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.

air compressor

What is the role of air compressors in manufacturing and industrial processes?

Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:

1. Pneumatic Tools and Equipment:

Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.

2. Automation and Control Systems:

Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.

3. Air Blowing and Cleaning:

Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.

4. Air Separation and Gas Generation:

Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.

5. HVAC Systems:

Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.

6. Air Compression for Storage and Transport:

Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.

7. Process Instrumentation:

Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.

8. Material Handling and Pneumatic Conveying:

In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.

Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.

air compressor

How does an air compressor work?

An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:

1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.

2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.

3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.

4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.

5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.

6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.

Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.

In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.

China Custom Heavy Duty Industrial Electrical Air Compressor   air compressor portableChina Custom Heavy Duty Industrial Electrical Air Compressor   air compressor portable
editor by CX 2023-11-01

China factory New Prodfuct Stationary Twin/Double Screw Air Compressor Low Pressure Manufacture Compressors Good Quality portable air compressor

Product Description

REDUCE ENERGY CONSUMPTION

Under different conditions,the demand for gas will float.Through a large number of research and calculation of marketdemandCha nun confirmed it.Only about 10% of applications require stable air supplyTherefore,frequency conversioncompressor can play a greater role in energy saving.
Energy cost often accounts for 70% of the life cycle cost of a compressor. The production of compressed air may account for 40% of all electricity costs in the plant.In almost every factory,the gas consumption will vary with different time periods,with its high and low CHINAMFG periods. permanent magnet variable frequency screw air compressor can supply glass completely according to the requirements of gas consumption,which can not only save a lot of energy, but also protect theenvironment for future generations.
INTERIOR STRUCTURE

CUSTOM OIL
COOLED MOTOR
First-stage energy-efficient motor,Low Noise,IP65 protection grade

 

AUTOMOTIVE GRADE
PERMANENT MAGNET MOTOR
IE4 high efficiency permanent magnet motor.
AUTOMOTIVE PERMANENT MAGNET MOTOR ForN38UH high grade permanent magnet, IP67 protection grade, and fully enclosed structure uniquevacuum epoxy dipping paint,effectively guaranteeing the stable operation of unit.

 

CHANUN
CUSTOM CONVERTER
Permanent magnet variable-frequency conversion technology, wide voltage. energy-saving ,with a small impact on the power grid.

 

7 INCH TOUCH SCREEN

Large touch screen.all-round protection monitoring with functions of motor start/stopcontrol, operation control:reversal protection of air compressor: and multi-point temperature detection and control protection.

 

HIGH MOBILITY (OPTIONAL)

Easy and flexible to rotate. so that the air compressor is able to move conveniently andquickly (optional)

ZheJiang CHINAMFG Machinery Manufacturing Co. , Ltd. is located in HangZhou, ZheJiang .CHINAMFG is a comprehensive screw air compressor manufacturer that engaged in R & D, design, production and sales. It has a plant of 20,000 square meters, including a large production workshop,a comprehensive first-class exhibition hall and a testing laboratory.
 

Dukas has excellent mechanical engineering designers, an experienced staff team and a professional management team. The production concept focuses on energy-saving and is committed to perfecting and improving the technological process in order to get the core technology of super frequency energy-saving, achieving the characteristics of mute, durability, power saving and safety.

The company has 9 series of products with multiple models. Including Fixed speed air compressor, PM VSD air compressor, PM VSD two-stage air compressor, 4-in-1 air compressor, Oil free water lubrcating air compressor, Diesel portable screw air compressor, Electric portable screw air compressor, Air dryer, Adsorption machine and the matching spare parts.

Dukas adheres to the business philosophy of cooperation and mutual benefit to provide a one-stop service for every customer!
 

Dukas air compressors not only cover the domestic market but also are exported to more than 20 countries and regions such as South Africa, Australia, Thailand, Russia, Argentina, Canada and so on.
Dukas products have won a good reputation from users for their excellent quality and style. The company has always adhered to the concept of quality first, service first and dedication to providing every customer with excellent products and meticulous after-sales service!
 

Dukas warmly welcome customers to visit our factory and establish a wide range of cooperation!

Frequency Asked Question:

Q1: Are you factory or trade company?  
A1: We are factory.

Q2: What the exactly address of your factory? 
A2: Our Factory is Located in Xihu (West Lake) Dis. CountyHangZhou CityZheJiang  Province, China.

Q3: Will you provide spare parts of your products? 
A3: Yes, We provide all parts to customer, so you can do repair or maintenance without trouble.

Q4: Can you accept OEM orders? 
A4: Yes, with professional design team, OEM orders are highly welcome.

Q5: How long will you take to arrange production?
A5: Immediate delivery for stock products.380V 50HZ we can delivery the goods within 3-15 days. Other voltage or other color we will delivery within 25-30 days.

Q6: Warranty terms of your machine?
A6Two years warranty for the machine and technical support always according to your needs.

Q7: Can you provide the best price?
A7:According to your order, we will provide you the best price.

After-sales Service: 24 Hours
Warranty: 2 Year
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Horizontal
Customization:
Available

|

air compressor

Can air compressors be used for gas compression and storage?

Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:

Gas Compression:

Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.

Gas Storage:

Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.

Gas Types:

While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:

  • Nitrogen
  • Oxygen
  • Hydrogen
  • Carbon dioxide
  • Natural gas
  • Refrigerant gases

It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.

By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.

air compressor

How are air compressors employed in the mining industry?

Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:

1. Exploration and Drilling:

Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.

2. Ventilation and Air Quality Control:

Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.

3. Material Conveyance:

In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.

4. Dust Suppression:

Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.

5. Instrumentation and Control:

Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.

6. Explosive Applications:

In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.

7. Maintenance and Repair:

Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.

It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.

By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.

air compressor

What is the difference between a piston and rotary screw compressor?

Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:

1. Operating Principle:

  • Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
  • Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.

2. Compression Method:

  • Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
  • Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.

3. Efficiency:

  • Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
  • Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.

4. Noise Level:

  • Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
  • Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.

5. Maintenance:

  • Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
  • Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.

6. Size and Portability:

  • Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
  • Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.

These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.

China factory New Prodfuct Stationary Twin/Double Screw Air Compressor Low Pressure Manufacture Compressors Good Quality   portable air compressorChina factory New Prodfuct Stationary Twin/Double Screw Air Compressor Low Pressure Manufacture Compressors Good Quality   portable air compressor
editor by CX 2023-11-01

China factory Lubricated 1year CHINAMFG 3330X1750X1640mm China Portable Air High Pressure Rotary Diesel Compressor Manufacture with Hot selling

Product Description

Model  MDS185-FF
Compressor Air
delivery
m3/min

5.18

cu.ft/min   185
Discharge pressure bar 7
psig 101.5

Lubricating Oil Capacity

L 23
Diesel
Engine
Manufacture&Model

Foxair-4571DF-005

Cylinder Number 4
Rotation speed(Rmp) Operating 2650
Idle speed(r/min) 2200
Rated power(KW)

42

Lubricating Oil capacity(L) 300

Displacement (L)

2.7

Lubricating Oil Capacity (L)

7

Coolant Capacity (L)

9

Battery

6-QW-70

Standard Configuration

Suction valve                                    Lubricating oil filter                           Oil thermostatic valve                                             50°C radiator
 Solenoid valve                                Vertical air/oil tank                                Pressure regular valve                              Air/oil separator                     

  Lubricating oil radiator       Safety valve                                                   Emergency stop button                                 Air filter of engine
 Minimum pressure valve       Lockable battery isolator switch                                                                                                                                                                 
 Air filter of compressor        Vent valve                                                       Powder coated canopy                                           Shuttle valve    
 24V sealed for life maintenance free battery                                Fuel tank for 8 hours running

General Features

Structure diagram

1. Lifting bail   2.Exhaust outlet   3.Door    4. Handle   5.Service valve    6. Instrument panel

 

Feature&Benefit
Feature   Benefit
Pressure selection and control Easy pressure setting
Flow selection and control The working pressure and airflow rate can be adjusted according to the size of air consumption without wasting any diesel
The twin-screw rotor is directly connected with the diesel engine by a highly flexible coupling Outputting more air with less energy consumption, featuring high reliability, longer service life, and low maintenance cost.
The two-stage air filtration system The total efficiency of air filtration reaches 99.8% ensuring the compressor to not be infringed by dust and dirt particles and longer service life of the engine
High-temperature resistance design Able to run for a long time under extreme cold or hot temperature from -20ºC to 50ºC
One-button start, clear operational parameters Operators don’t have to go through long-term professional training, and unattended operations can be achieved.

 

Application areas

Field Application Nominal Working Pressure(bar) Free Air Delivery Range(m3/min)
General Construction
(building sites, road maintenance, bridges, tunnels, concrete pumping and shotcreting)
Hand-held pneumatic breakers 7~14 5~13
Jack hammers
Air guns
Shotcrete equipment
Pneumatic wrenches
Nut runners
Ground Engineering Drilling 
(basement and foundation excavation for apartment blocks and other buildings)
Pneumatic rock drills 7~17 12~28
Block cutters
Dewatering pumps.
Hand-held pneumatic breakers
Utility, CHINAMFG Blasting
(shipyards, steel construction and large renovation jobs)
Sandblasting
(remove rust, scale, paint)
7~10 10~22
Blast Hole Drilling
(aggregate production for construction stabilization, cement production in limestone quarries and open pit mining)
Rock drills 14~21 12~29
Dewatering pumps
Hand-held breakers
High Pressure Drilling
(drilling for water wells and foundations for high-rise buildings, along with geotechnical/geothermal applications)
Water well drilling 20~35 18~40
 DTH drilling
Rotary drilling

 

Selection table

Small Series
Small Series FAD Pressure Engine model Dimensional Date(mm)
m3/min cfm Bar psig length width height weight(kg)
model with tow bar without tow bar
MDS55S-7 1,55 55  7 101,5  D902 2925 1650 1200 1200 600
MDS80S-7 2,24 80  7 101,5 D1005 2925 1650 1200 1200 630
MDS100S-7 2,8 100  7 101,5 V1505 2925 1650 1200 1200 640
MDS125S-7 3,5 125  7 101,5 V1505 3065 1800 1500 1350 810
MDS130S-8 3,7 132  8 116 JE493 3065 1800 1500 1350 810
MDS185S-7 5,18 185  7 101,5 JE493 3200 1900 1740 1660 950
MDS185S-10 5,18 185  10 145 JE493 3050 1900 1740 1660 950
 
Middle Series  (Low&Medium pressure)
Middle Series  (Low&Medium pressure) FAD Pressure Engine model Dimensional Date(mm)
m3/min cfm Bar psig length width height weight(kg)
model with tow bar without tow bar
MDS265S-7 7,42 265  7 101,5 JE493 3629 2200 1700 1470 1200
MDS300S-14 8,4 300  14 203 4BTA3.9 3850 2600 1810 2378 1800
MDS350S-10 9,9 354  10 145 4BT3.9 3850 2600 1810 2378 1800
MDS390S-7 11 393  7 101,5 4BTA3.9 3850 2600 1810 2378 1800
MDS390S-13 11 393  13 188,5 QSB4.5 3850 3100 1810 2378 1980
MDS429S-7 12 429  7 101,5 4BTA3.9 3850 2600 1810 2378 1800
MDS429S-14 12 429  14 203 QSB4.5 3850 3100 1810 2378 1980
MDS500S-14 14,1 504  14 203 6BTAA5.9 4550 3600 1810 2378 3100
MDS690S-14 19,3 689  14 203 QSB6.7 4950 3300 2170 2620 3500
MDS720S-10 20,2 721  10 145 QSB6.7 4950 3300 2170 2620 3500
MDS750S-12 21 750  12 174 QSB6.7 4950 3300 2170 2620 3500
MDS786S-10.3 22 786  10,3 149,35 QSB6.7 4950 3300 2170 2620 3500
MDS820S-14 23 821  14 203 6LTAA8.9 5300 4200 2170 2630 5200
MDS850S-8.6 24 857  8,6 124,7 6CTAA8.3 5300 4200 2170 2630 4600
MDS900S-7.1 25,3 904  7,1 102,95 6CTA8.3 5300 4200 2170 2630 4600
 
Middle Series (Medium&High pressure)
Middle Series (Medium&High pressure) FAD Pressure Engine model Dimensional Date(mm)
m3/min cfm Bar psig length width height weight(kg)
model with tow bar without tow bar
MDS460S-17 13 464  17 246,5 6BTAA5.9 4600 3500 1800 2230 3500
MDS620S-17 17,4 621  17 246,5 6LTAA8.9 5300 4200 2170 2630 5200
MDS650S-19 18,2 650  19 275,5 QSL8.9 5300 4200 2170 2630 5200
MDS690S-20.4 19,4 693  20,4 295,8 6LTAA8.9 5300 4200 2170 2630 5200
MDS770S-21 21,6 771  21 304,5 6LTAA8.9 5300 4200 2100 2630 5280
MDS830S-18 23,2 830  18 261 6LTAA8.9 5300 4200 2100 2630 5280
MDS820S-25 23 821  25 362,5 QSM11 5300 4200 2100 2630 5600
MDS860S-20.4/17.3 24,2 864  20,4 295,8 QSL8.9 5300 4200 2100 2630 5280
24,2 864  17,3 250,85
MDS875S-23 24,5 875  23 333,5 QSM11 5300 4200 2100 2630 5600
 
Large Series    (Low&Medium pressure)
Large Series    (Low&Medium pressure) FAD Pressure Engine model Dimensional Date(mm)
m3/min cfm Bar psig length width height weight(kg)
model with tow bar without tow bar
MDS900S-14.2/10.5 25,1 896  14,2 205,9 6LTAA8.9 5300 4200 2100 2630 5280
25,2 900  10,5 152,25
MDS910S-14 25,6 914  14 203 6LTAA8.9 5300 4200 2100 2630 5280
MDS970S-10 27,2 971  10 145 QSL8.9 5300 4200 2100 2630 5280
MDS1011S-8.6 28,3 1011  8,6 124,7 QSL8.9 5300 4200 2100 2630 5280
MDS1054S-12 29,5 1054  12 174 QSL8.9 5300 4200 2100 2630 5280
MDS1250S-8.6 35 1250  8,6 124,7 QSL8.9 5300 4200 2100 2630 5280
MDS1400S-13 40 1400 13 188,5 QSZ13 6200 4700 2100 2630 5800
MDS1600S-10.3 45 1600 10,3 149,35 QSZ13 6200 4700 2100 2630 5800
MDS1785S-13 50 1785 13 188,5 QSZ13 6200 4700 2100 2630 5800
MDS2140S-10 60 2142 10 145 QSZ14 7400 5400 2230 2630 8400
 
Large Series    (Medium&High pressure)
Large Series    (Medium&High pressure) FAD Pressure Engine model Dimensional Date(mm)
m3/min cfm Bar psig length width height weight(kg)
model with tow bar without tow bar
MDS900S-20 25,3 904  20 290 QSM11 5300 4200 2100 2630 5800
MDS960S-18 26,9 961  18 261 QSM11 5300 4200 2100 2630 5800
MDS1000S-35 28,2 1000 35 507,5 QSZ13 6200 4700 2100 2630 7200
MDS1089S-25 30,5 1089  25 362,5 QSZ13 6200 4700 2100 2630 7200
MDS1200S-24 33,6 1200  24 348 QSZ13 6200 4700 2100 2630 7200
MDS1250S-21 35 1250  21 304,5 QSZ13 6200 4700 2100 2630 7200
MDS1250S-25 35 1250  25 362,5 QSZ13 6200 4700 2100 2630 7200
MDS1250S-30 35 1250 30 435 WP17G770E302 6200 4700 2100 2630 7800
MDS1250S-35 35 1250 35 507,5 WP17G770E302 6200 4700 2100 2630 7800
MDS1250S-40 35 1250 40 580 WP17G770E302 6200 4700 2100 2630 7800
MDS1428S-18 40 1428 18 261 QSZ13 6200 4700 2100 2630 7200
MDS1428S-35 40 1428 35 507,5 TAD1643VE-B 7400 5500 2180 2650 10000
MDS1428S-40 40 1428 40 580 QSK19 7400 5500 2180 2650 10000
MDS1600S-25 44,8 1600 25 362,5 WP17G770E302 7400 5500 2180 2650 10000

 

GTL Air compressor test system

 

After-sales Service: Online
Warranty: 1year
Lubrication Style: Lubricated
Cooling System: Water Cooling
Power Source: Diesel Engine
Cylinder Position: Vertical
Customization:
Available

|

air compressor

Are there special considerations for air compressor installations in remote areas?

Yes, there are several special considerations to take into account when installing air compressors in remote areas. These areas often lack access to infrastructure and services readily available in urban or well-developed regions. Here are some key considerations:

1. Power Source:

Remote areas may have limited or unreliable access to electricity. It is crucial to assess the availability and reliability of the power source for operating the air compressor. In some cases, alternative power sources such as diesel generators or solar panels may need to be considered to ensure a consistent and uninterrupted power supply.

2. Environmental Conditions:

Remote areas can present harsh environmental conditions that can impact the performance and durability of air compressors. Extreme temperatures, high humidity, dust, and corrosive environments may require the selection of air compressors specifically designed to withstand these conditions. Adequate protection, insulation, and ventilation must be considered to prevent damage and ensure optimal operation.

3. Accessibility and Transport:

Transporting air compressors to remote areas may pose logistical challenges. The size, weight, and portability of the equipment should be evaluated to ensure it can be transported efficiently to the installation site. Additionally, the availability of suitable transportation infrastructure, such as roads or air transportation, needs to be considered to facilitate the delivery and installation process.

4. Maintenance and Service:

In remote areas, access to maintenance and service providers may be limited. It is important to consider the availability of trained technicians and spare parts for the specific air compressor model. Adequate planning for routine maintenance, repairs, and troubleshooting should be in place to minimize downtime and ensure the longevity of the equipment.

5. Fuel and Lubricants:

For air compressors that require fuel or lubricants, ensuring a consistent and reliable supply can be challenging in remote areas. It is necessary to assess the availability and accessibility of fuel or lubricant sources and plan for their storage and replenishment. In some cases, alternative or renewable fuel options may need to be considered.

6. Noise and Environmental Impact:

Remote areas are often characterized by their natural beauty and tranquility. Minimizing noise levels and environmental impact should be a consideration when installing air compressors. Selecting models with low noise emissions and implementing appropriate noise reduction measures can help mitigate disturbances to the surrounding environment and wildlife.

7. Communication and Remote Monitoring:

Given the remote location, establishing reliable communication channels and remote monitoring capabilities can be essential for effective operation and maintenance. Remote monitoring systems can provide real-time data on the performance and status of the air compressor, enabling proactive maintenance and troubleshooting.

By addressing these special considerations, air compressor installations in remote areas can be optimized for reliable operation, efficiency, and longevity.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

How do you choose the right size of air compressor for your needs?

Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:

1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.

2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.

3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.

4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.

5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.

6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.

7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.

8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.

By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.

China factory Lubricated 1year CHINAMFG 3330X1750X1640mm China Portable Air High Pressure Rotary Diesel Compressor Manufacture   with Hot sellingChina factory Lubricated 1year CHINAMFG 3330X1750X1640mm China Portable Air High Pressure Rotary Diesel Compressor Manufacture   with Hot selling
editor by CX 2023-11-01

China wholesaler Industrial 7.5HP 150L Portable Piston Belt Driven Air Compressor lowes air compressor

Product Description

Product Description

About company:

HangZhou Shangyang Trading Co., Ltd. is a foreign trade technology enterprise focusing on providing air compressor products. The company has obvious advantages in the whole industry in terms of technical strength, business communication ability and quality control.
The company’s products mainly include air compressor, welding machine, cleaning machine, water pump, motor, etc., sold to more than 80 countries and regions around the world; And long-term for Europe, North and South America and other CHINAMFG brands and end sellers to provide high-quality air compressor products; The cooperation with these customers enables the company’s products to meet the technical and quality requirements of the mainstream markets in Europe and America.
 

Main Features: 

1.Heavy cast iron body: heavy load, long stroke, low fuel consumption, low noise

2.Cylinder: made of high-grade cast iron, strength, good lubricity, wall by the fine honing, wear-resistant, durable

3.Piston ring: good elasticity, excellent wear resistance, low oil consumption, not easy to make the valve group carbon deposition and loss of oil to burn the crankshaft and connecting rod.

4.The crankshaft, connecting rod, piston: well balanced, wear resistance, high strength, smooth running balance.

5.Pressure cast iron pump, can be adapted to use large horsepower;

6.Customers could choose different type of compressor pump with different size of  air tank or different motor power

 Services:

before sales 1.24 hours online service .
2.Any inquiries will be replied within 12 hours.
3.Offer professional machine details and information.
4.Technology knowledge share .
on sale 

1.Protect the client payment security .
2.Reasonable price and ensure quality .
3.Send machine pictures , videos as client need and let client know machine

more better.

after sales 

1.Fast delivery and test and adjust machine working well before delivery.
2.Supply manual book and technical support in order to use well.
3.Offer install pictures step by step or videos and dispatch the engineer.
4.Guarantee time is 1 year.

 

After-sales Service: Overseas Third-Party Support Available
Warranty: 0ne Year
Lubrication Style: Lubricated
Cooling System: Air Cooling
Cylinder Arrangement: Duplex Arrangement
Cylinder Position: Vertical
Customization:
Available

|

air compressor

Can air compressors be used for shipbuilding and maritime applications?

Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:

1. Pneumatic Tools and Equipment:

Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.

2. Painting and Surface Preparation:

Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.

3. Pneumatic Actuation and Controls:

Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.

4. Air Start Systems:

In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.

5. Pneumatic Conveying and Material Handling:

In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.

6. Air Conditioning and Ventilation:

Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.

These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.

air compressor

Can air compressors be used for inflating tires and sporting equipment?

Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:

1. Tire Inflation:

Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.

2. Sporting Equipment Inflation:

Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.

3. Air Tools for Inflation:

Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.

4. Adjustable Pressure:

One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.

5. Efficiency and Speed:

Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.

6. Portable Air Compressors:

For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.

It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.

air compressor

What are the key components of an air compressor system?

An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:

1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.

2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.

3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.

4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.

6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.

7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.

8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.

9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.

10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.

These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.

China wholesaler Industrial 7.5HP 150L Portable Piston Belt Driven Air Compressor   lowes air compressorChina wholesaler Industrial 7.5HP 150L Portable Piston Belt Driven Air Compressor   lowes air compressor
editor by CX 2023-10-31

China Professional Factory Small Portable Silent Oil Free Air Compressor air compressor lowes

Product Description

 

Product Description

Features:

1. The machine is light ,easy to carry.

2.Without refueling in use process, low energy consumption,simple maintenance and low cost.

3. The machine little vibration, low noise .

4.Compare with similar machines ,the air charging time is faster and the work is reliable.

5. Suitable for food, medical treatment, woodworking decoration, scientific research institutions,and compressed gas as a power source in the filed.

Detailed Photos

Product Parameters

Model

HB12

HB30

HB35

HB70A

Input power(kw)

0.68

0.75

0.85

1.36

Voltage(V/Hz)

220/50

220/50

220/50

220/50

Current(A)

2.8

3.0

3.8

6.8

Rotate speed (rpm/min)

1400

1400

1400

1400

Air intake(L/min)

116

128

150

256

Exhaust pressure(Mpa)

0.8

0.8

0.8

0.7

Noise(db(A))

66

66

68

71

Volume(L)

12

30

35

70

Weight(KG)

18

23

26

45

Dimensions(CM)

53*23*55

54*30*56

64*32*61

70*35*70

Certifications

Company Profile

FAQ

1. who are we?
We are based in ZheJiang , China, start from 2014,sell to Africa(15.00%),Domestic Market(15.00%),Mid East(14.50%),South America(14.00%),South Asia(12.50%),Southeast Asia(10.00%),Central America(10.00%),North America(8.00%). There are total about 11-50 people in our office.

2. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;

3.what can you buy from us?
Air Compressor,Mining Drilling Rig,Water Well Drilling,Hammer,Air Energy Heat Pump

4. why should you buy from us not from other suppliers?
We are the most powerful air compressor equipment and engineering drilling equipment and air energy manufacturers in China with more than 23years production experience,professional R&D team, special after service team, world class sophisticated equipment.

5. what services can we provide?
Accepted Delivery Terms: FOB,CFR,CIF,EXW,DDP,DDU,Express Delivery;
Accepted Payment Currency:USD;
Accepted Payment Type: T/T,L/C,D/P D/A,MoneyGram,PayPal,Western Union,Cash;
Language Spoken:English,Chinese,Spanish

Contact Person:

Name:Ivy
 
 

 

After-sales Service: 24hour Online Service
Warranty: 1 Year
Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Vertical

air compressor

How does variable speed drive technology improve air compressor efficiency?

Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:

1. Matching Air Demand:

Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.

2. Reduced Unloaded Running Time:

Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.

3. Soft Starting:

Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.

4. Energy Savings at Partial Load:

In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.

5. Elimination of On/Off Cycling:

Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.

6. Enhanced System Control:

VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.

By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.

air compressor

How are air compressors used in refrigeration and HVAC systems?

Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:

1. Refrigerant Compression:

In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.

2. Refrigeration Cycle:

The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.

3. HVAC Cooling and Heating:

In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.

4. Air Conditioning:

Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.

5. Compressor Types:

Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.

6. Energy Efficiency:

Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.

By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.

air compressor

What are the safety considerations when operating an air compressor?

Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:

1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.

2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.

3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.

4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.

5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.

6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.

7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.

8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.

9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.

10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.

By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.

China Professional Factory Small Portable Silent Oil Free Air Compressor   air compressor lowesChina Professional Factory Small Portable Silent Oil Free Air Compressor   air compressor lowes
editor by CX 2023-10-31

China supplier All-in-One Oil -Injected 7.5kw 10HP Machine Portable Screw Air Compressor supplier

Product Description

Product description:
1. Energy-saving effect of permanent magnet variable frequency air compressor
2. Maintenance cost of permanent magnet variable frequency air compressor is reduced
3. The permanent magnet variable frequency air compressor reduces the capacity of the power grid of the factory
4. Permanent magnet variable frequency air compressor reduces production loss
5. Permanent magnet variable frequency air compressor can reduce noise

Application

related parts

Air  Compressor Daily Consumables Air/oil/pipeline Filter,Oil Separator, Lubricant.
Air Compressor Electrial Components Pressure/temprature sensor, Differential Pressure Sensor,pressure/temp. switch.
Air Compressor Preventive Maintenance Kit Min. pressure Kit, Oil stop Kit,Check Valve Kit, Unloading Valve Kit, Safety valve kit and so on.
Aircompressor Motor MainMotor, Fan Motor.
Air Compressor Spare Parts hose,o-ring, oil level guage, shaft, gear wheel,display, diaphragm,couplings.
Air  Compressor rotor for Atlas Copco, CHINAMFG Rand, Sullair,CompAir, Fusheng,Quincy.
Air Compressor  Cooler After Cooler, Oil Cooler.

Certification

Company Profile:
Screw Air Compressor

About Airstone

We take better care of  your Compressed Air System

Our company, Airstone, was founded in 2000, in HangZhou, China.

√ screw compressor 4KW to 315KW
√ spare parts available for all your needs
√ 150 acres factory
√ 2500 units quality air compressors per month

 √ With a classic Chinese hardworking team for 20 years

√ Our confidence to satisfy all your air needs comes from our team chemistry.

Anytime Any Ways

CONTACT US 

Hongkong CHINAMFG Industry Ltd

YOU MAY LIKE
Services kits:unloading valve kits, Minimum pressure valve kit,
Stop oil valve kit, check valve kit, thermostat valve kit and more

Valve assembly:air intake valve, thermostat valve, solenoid valve, minimum pressure valve kit, blow off valve, drain valve and more

Rubber parts: hose, coupling, elbow, anti-vibration pad, housing, belt

Sensor: temperature sensor, pressure sensor, oil level sensor
Other parts: gear wheel, controller, temperature switch, pressure switch, cleaning agent

Packaging&Shipping
Packaging & Shipping

No Cercern for Any Damage or Delay 

√ Strong sense of responsibility
√ Professionally trained packing&moving team

 

 √ 2 hours road trip to HangZhoug Harbor

 

FAQ

1. Accept OEM orders?     

Highly welcome.

 

2. Offer spare parts?   

Spare parts always available.

 

3. Are you a factory or trade company?  

Factory

 

4. Any Warranty?     

One year warranty for the machine plus 24/ 7 service for technical support.

 

5. The exact address of your factory? .

Our head office is located in 2F Xingshun Technology Park, Chongtou community,Chang’an, HangZhou City ZheJiang Province,China. 

Our head factory is located in Area B,Industry Zone,Lian hua County, HangZhou City, ZheJiang Porvince, China.

Lubrication Style: Oil-less
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Structure Type: Closed Type
Installation Type: Stationary Type
Customization:
Available

|

air compressor

How are air compressors utilized in pharmaceutical manufacturing?

Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:

1. Manufacturing Processes:

Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.

2. Instrumentation and Control Systems:

Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.

3. Packaging and Filling:

Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.

4. Cleanroom Environments:

Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.

5. Laboratory Applications:

In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.

6. HVAC Systems:

Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.

By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.

air compressor

Can air compressors be integrated into automated systems?

Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

Pneumatic Automation:

Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

Control and Regulation:

In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

Sequential Operations:

Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

Energy Efficiency:

Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

Monitoring and Diagnostics:

Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

air compressor

Are there portable air compressors available for home use?

Yes, there are portable air compressors specifically designed for home use. These portable models offer convenience, versatility, and ease of use for various tasks around the house. Here are some key points about portable air compressors for home use:

1. Compact and Lightweight: Portable air compressors are typically compact and lightweight, making them easy to transport and store. They are designed with portability in mind, allowing homeowners to move them around the house or take them to different locations as needed.

2. Electric-Powered: Most portable air compressors for home use are electric-powered. They can be plugged into a standard household electrical outlet, eliminating the need for gasoline or other fuel sources. This makes them suitable for indoor use without concerns about emissions or ventilation.

3. Versatile Applications: Portable air compressors can be used for a wide range of home applications. They are commonly used for inflating tires, sports equipment, and inflatable toys. They are also handy for operating pneumatic tools such as nail guns, staplers, and paint sprayers. Additionally, portable air compressors can be used for cleaning tasks, powering airbrushes, and other light-duty tasks around the house.

4. Pressure and Capacity: Portable air compressors for home use typically have lower pressure and capacity ratings compared to larger industrial or commercial models. They are designed to meet the needs of common household tasks rather than heavy-duty applications. The pressure and capacity of these compressors are usually sufficient for most home users.

5. Oil-Free Operation: Many portable air compressors for home use feature oil-free operation. This means they do not require regular oil changes or maintenance, making them more user-friendly and hassle-free for homeowners.

6. Noise Level: Portable air compressors designed for home use often prioritize low noise levels. They are engineered to operate quietly, reducing noise disturbances in residential environments.

7. Cost: Portable air compressors for home use are generally more affordable compared to larger, industrial-grade compressors. They offer a cost-effective solution for homeowners who require occasional or light-duty compressed air applications.

When considering a portable air compressor for home use, it’s important to assess your specific needs and tasks. Determine the required pressure, capacity, and features that align with your intended applications. Additionally, consider factors such as portability, noise level, and budget to choose a suitable model that meets your requirements.

Overall, portable air compressors provide a practical and accessible compressed air solution for homeowners, allowing them to tackle a variety of tasks efficiently and conveniently within a home setting.

China supplier All-in-One Oil -Injected 7.5kw 10HP Machine Portable Screw Air Compressor   supplier China supplier All-in-One Oil -Injected 7.5kw 10HP Machine Portable Screw Air Compressor   supplier
editor by CX 2023-10-31

China Hot selling High Quality Air Compressor for Hospital portable air compressor

Product Description

High Quality Air Compressor for Hospital
High Quality Air Compressor for Hospital

Product Description

1. Description

  The compressed air is generated by the air compressor, enters the gas storage tank through the aftercooler, and then removes impurities, oil mist and moisture in the compressed air through the filter group and the adsorption dryer, and then is regulated by the pressure reducer. Compressed air ducts are used in medical equipment such as operating rooms and ICUs.

  The central compressed air station is composed of an air compressor, an aftercooler, a gas storage tank, a filter group, an adsorption dryer, an automatic control cabinet, and an alarm. Usually it is a two-unit configuration, 1 for each.

2. Why use dry, clean compressed air?

IInhibit the survival and reproduction of bacteria
Prevent condensation into liquid water at low temperatures
Liquid water will damage these equipment after entering the anesthesia machine or ventilator
Prevent icing blocked pipes below zero
High humidity in the pipe can cause oxidation of the pipe
 

3. Advantage
1.Oil-free design, ensuring the generation of qualified medical air
2.Reduced equipment failure frequency, saving costs 
3.Controlled moisture content, achieving high safety performance
 

 4. CHINAMFG Hospital Compressed Air Generator  Working Principle

 
4.1 Medical Compressed Air Station System Specifications

System Model  Air Compressor Purification controller Air tanks (M3) Output Consumption (M3/min) Output Pressure (Mpa)
Model  Number Model  Number
ETA-04 ET-YA041 1 ET-YK15 1 0.3 0.41 0.4-0.6
ETA-07 ET-YA042 1 ET-YK15 1 0.3 0.82 0.4-0.6
ETA-11 ET-YA043 1 ET-YK26 1 0.6 1.23 0.4-0.6
ETA-15 ET-YA042 2 ET-YK26 1 0.6 1.64 0.4-0.6
ETA-22 ET-YA043 2 ET-YK38 1 1 2.46 0.4-0.6
ETA-30 ET-YA043 3 ET-YK38 1 1 3.69 0.4-0.6

4.2 Air Compressor Specifications

Model

Output 

Consumption

 (M3/min)

Working pressure (Mpa) Power

Power

(KW)

L*W*H(mm) Weight(KG) Noise(dB)
ET-YA041 0.41 0.6-0.8 AC380V/50Hz/3P 4 1300×700×750 170 65±3
ET-YA042 0.82 0.6-0.8 AC380V/50Hz/3P 8 1300×700×1350 255 65±3
ET-YA043 1.23 0.6-0.8 AC380V/50Hz/3P 12 1300×700×1950 345 65±3

 4.3 Purification Controller Specifications

Model Capacity (M3/min) Working pressure (Mpa) Power 

Power

  (KW)

Dew Point (ºC) Weight (KG) L*W*H(mm) Noise(dB)
ET-YK15 1.5 0.6-0.8 AC220V/50Hz 30 </=-40 356 1300×900×1700 </=75
ET-YK26 2.6 0.6-0.8 AC220V/51Hz 30 </=-40 374 1300×900×1700 </=75
ET-YK38 3.8 0.6-0.8 AC220V/52Hz 30 </=-40 412 1300×900×1700 </=75

 
5. Quality Control Process
ETR Enigineering & Technology,clients can be sure of the quality of CHINAMFG solution. ETR uses only the best suppliers and components. And  all compress air system are tested & commissioned by professional Experts to make sure everything is qualified before they leave the factory.

 

Accessories

Air compressor
Air compressor from Atlas Copco, an international famous brand, best manufacturer of air compressor in the world, is adopt in all CHINAMFG PSA oxygen generator to provide best in-time after-sales service to customers all around the world with low maintenance and minimum repair rate.

Refrigerate Air dryer
Refrigerate Air dryer with best, reliable performance from SMC, Japan, a international famous brand, one of the best manufacturer of refrigerate air dryer in the world, is adopt in all ETR PSA Oxygen Generator to achieve best pre-treatment for the compressed air.

Desiccant air dryer
Desiccant air dryer made by CHINAMFG Rand,  with high efficiency and reliable performance is adopt if the user has strict requirement on dew-point of produced oxygen gas.

Air filters
Treatment for compressed air is very important to the PSA oxygen generator. Online compressed air filters made by CHINAMFG are adopt to remove oil, dust, water in the compressed air.

Product oxygen filter
Bacteria removal filters made by apureda will be adopt for product gas treatment to meet customer’s requirements.

Instruments
Oxygen analyzer, pressure transmitter, oxygen flowmeter are standard accessories for CHINAMFG oxygen generator,  and all from China top supplier. Dew-point analyzer, glass flowmeter, CO analyzer, etc. are optional.
Gas Monitoring System
This system can be monitored by both on-site electric control cabinet and mobile phone APP. 

FAQ

 1. Are you manufacturer or Trade Company?
   We are the manufacturer of compress air system, founded in 2003.

 2. What’s the order compress air system  process?
   a. Inquiry—provide us all clear requirements.
   b. Quotation—official quotation form with all clear specifications.
   c. Printing file— PDF, Ai, CDR, PSD, the picture resolution must be at least 300 dpi.
   d. Contract confirmation—provide correct contract details.
   e. Payment terms— Negotiable.
   f. Production—mass production
   g. Shipping— by sea, air or courier. Detailed picture of package will be provided.
   h. Installation and commissioning

3.What terms of payment you use?
   T/T, L/C etc.

Lubrication Style: Oil-free
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Structure Type: Semi-Closed Type
Installation Type: Stationary Type
Customization:
Available

|

air compressor

Can air compressors be used for gas compression and storage?

Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:

Gas Compression:

Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.

Gas Storage:

Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.

Gas Types:

While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:

  • Nitrogen
  • Oxygen
  • Hydrogen
  • Carbon dioxide
  • Natural gas
  • Refrigerant gases

It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.

By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.

air compressor

What is the impact of altitude on air compressor performance?

The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:

1. Decreased Air Density:

As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.

2. Reduced Airflow:

The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.

3. Decreased Power Output:

Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.

4. Extended Compression Cycle:

At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.

5. Pressure Adjustments:

When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.

6. Compressor Design:

Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.

7. Maintenance Considerations:

Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.

When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.

air compressor

What are the different types of air compressors?

There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:

1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.

2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.

3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.

4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.

5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.

6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.

These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.

China Hot selling High Quality Air Compressor for Hospital   portable air compressorChina Hot selling High Quality Air Compressor for Hospital   portable air compressor
editor by CX 2023-10-30