Tag Archives: quiet compressor

China manufacturer High Quality Medical Dental Quiet Silent Air Compressor air compressor parts

Product Description

Electric Silent Oilless Air Compressor keep Slient Work Enviroment

Quick Details TY-1EW-32
Applicable Industries: Medical & Dental  Showroom Location: None
Condition: New Type: PISTON
Configuration: PORTABLE Power Source: AC POWER
Lubrication Style: Oil-free Mute: Yes
Power Source: AC POWER Brand Name: Toye
Lubrication Style: Oil-free Dimension(L*W*H): 44X44X67CM
Place of Origin: HangZhou ,China Warranty: 2 Years
Voltage: 220V/110V Air capacity: 105L/min
Weight: 30KGS Video outgoing-inspection: Provided
Working Pressure: 0.8 bar Warranty of core components: 2 years
Machinery Test Report: Provided Gas Type: Natural Gas
Marketing Type: New products 2571 Usage:  
Core Components: Pressure vessel, Motor, Pump VDC: 220V/110V
Product name: Air compressor Local Service Location: NONE
Air delivery: 32L Certification CE,ISO13485
After Warranty Service: Online and Offline services Package Carton/wooden box
After sales Service Provided: Online and Offline services Supply Ability 1000PCS/month

OIL FREE: Compare to lubrication compressor, one-step operation, do not need any lubricated oil, and harmless to the human body, more health and hygiene.
 
SUPER SILENT: Noise level lower than 60dB, ensure have friendly-enviromently treating room.
 
MULTI-PHASE FILTERATION: Advanced branded water filter to ensure extremely green and dry air.
 
EASY USING: One-step operation, when connecting with power, air compressor work automatic, also equipped with thermal prevention deviceto avoid over heating to protect motors.
 
GREEN AIR: Air tank have internal oxidation-proofed precess,avoaid corrosion and supply hygiene air to the equipments.
 
ENERGY SAVING: High quality pressure switch used to control the power of air compressor automatically stop when reach max pressure, and restart at mix pressure.
 
LOW VIBRATION: Robber foot reduce vibration and keep the air compressor away from wet place.
 
HIGH DURABILITY: long life air pump up to 3,000 hours working time.
 
SIMPLE OPERATION: No need to lubricate oil.
 
Applications: 
Dental clinic, medical and health, SPA, Tattoo house, scientific research, electronic, chemical, Laboratory, spraying, Industrial, Printing etc.

More Design

 

Certifications

 

Company Profile

 

Exhibition

Production Workshop

 

 

Packaging & Shipping

Client Feedback

 

 

FAQ

1.Q:Are you a factory or trading company?

A:We are factory.we produce dental chair, dental intra oral camera and dental air compressor, and it’s approved CE certificated.

2.Q:Where is your factory located? How can I visit there?
A:Our factory is located in HangZhou City, ZheJiang Province, China, near HangZhou.You can fly to Xihu (West Lake) Dis. airport ,you can take tax or metro to HangZhou directly.All our clients, from home or abroad, are warmly welcome to visit us!

3.Q: How can I get Fob or C&F price?
A: Normally production time of products is from 2 week to 1 month depending on the quantity ordered. If you are sourcing a product, our representative will give you specific information regarding the lead time. If you need a rush order, contact our representatives to discuss your specific needs.

4.Q: How long is my warranty and what does it cover?
A:Detnal unit chair carry the full 1 year manufacturer warranty. Each warranty period begins at the date of delivery date and ends after 1 year.The warranty varies by option items and manufacturer All warranty claims will be void due to neglect, lack of maintenance, and/or improper handling.

5.How can I get the after sevice? How can I get the spare part after 1 year warranty?
A: We welcome your chats online (Chat or leave message: After service) or e-mail to us regarding any technical or related questions that you may have. And we will offer some free sparts for container order. We gurantee keep dental chair units spare parts offer.

If you want to know more information about our products welcome to contact us in any time, And welcome to our company!

Website: toyedent
Add: 5/F Zhisheng BLDG.,East Keji Rd.,Shishan Town,Xihu (West Lake) Dis. District, HangZhou

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Interface: 1
Teeth Whitening Method: Na
Applicable Departments: Orthodontic Department
Certification: ISO, CE
Type: Piston
Material: Metal
Samples:
US$ 165/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How are air compressors utilized in the aerospace industry?

Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:

1. Aircraft Systems:

Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.

2. Ground Support Equipment:

Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.

3. Component Testing:

Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.

4. Airborne Systems:

In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.

5. Environmental Control Systems:

Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.

6. Engine Testing:

In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.

7. Oxygen Systems:

In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.

It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.

air compressor

What is the impact of altitude on air compressor performance?

The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:

1. Decreased Air Density:

As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.

2. Reduced Airflow:

The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.

3. Decreased Power Output:

Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.

4. Extended Compression Cycle:

At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.

5. Pressure Adjustments:

When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.

6. Compressor Design:

Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.

7. Maintenance Considerations:

Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.

When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.

air compressor

How is air pressure measured in air compressors?

Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:

1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.

2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.

To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.

It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.

When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.

Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.

China manufacturer High Quality Medical Dental Quiet Silent Air Compressor   air compressor partsChina manufacturer High Quality Medical Dental Quiet Silent Air Compressor   air compressor parts
editor by CX 2024-02-11

China Standard Best Price Quiet Rotary Screw Industrial Air Compressor for Factory air compressor oil

Product Description

COMPANY PROFILE

KY-200KYG Air Compressor (can be customized) :

GENERAL FEATURES:
Permanent magnet inverter compressor because of its energy saving and high efficiency has become a hot and bright spot of the industry, the original air compressor energy consumption on the market, is gradually being the permanent magnet inverter compressor to replace or replacement, users can directly bring cost saveing of 20%-40%.
With the development of science and technology, air compressor is widely used in many industries such as machinery, metallurgy, building materials, electric power, chemical industry, food, textile and so on. However, the air compressor belongs to the high energy consumption equipment, power consumption in some industries accounted for more than 30% og the power consumption of production, it is commonly known as “electric tiger”.
SPECIAL FEATURES:
1,AIR PRESSURE STABILLTY
Due to the use of screw air compressor variable frequency stepless speed regulation characteristics of inverter, inverter controller or regulator through internal PID, can smoothly start; on consumption volatility is relatively large occasions, and can quicklyh adjust the response. Compared with the upper and lower limit switch control of the power frequency operation, the air pressure stability increases exponentially.
2,START NO IMPACT
Because the transducer itself contained the function of soft starter, starting current within the maximum rated current of 1.2 times, compared with the start frequency in general more than 6 times the rated current, start a little impact.
This impact is not only on the grid, the impact of the entire mechanical system, but also greatly reduced.
3,VARIABLE FLOW CONTROL
Power driven air compressor can only work in an exhaust, inverter air compressor can work in a wide range of exhaust. Frequency converter is based on the actual use of gas in real time to adjust the motor speed to control the amount of exhaust.
When the air volume is low, the air compressor can be automatically dormant. thereby greatly redcing the energy loss. The optimized control strategy can further improve the energy saving effect.
4,AC POWER SUPPLY VOLTAGE BETTER
Because of the over modulation technology of the inverter, the output voltage of the motor can be output when the voltage of the AC power supply is low, and the voltage of the output to the motor is too high.
For the generation of power, frequeucy conversion drive can show its advantages.
5,AC POWER SUPPLY VOLTAGE BETTER
Most of the working condition of the frequency conersion system is lower than the rated speed of the work, the host machine noise and wear down, prolongmain- tenance and service life.
If the fan is also driven by frequency conversion, can significantly reduce the nosie of air compressor work.

TECHNICAL PARAMETERS:

Model Power Pressure
(Mpa)
 
Air flow Noise Stage Exit pipe diameter
 
Weight
(KG)
Dimensions
(mm(LxWxH)
 
PE-10AVF 7.5 8 1.0 60±2
 
Single grade
 
3/4
 
280 1000*600*100
10 0.8
PE-20AVF   8 2.2 60±2
 
Single grade
 
1 480 1150*800*1280
10 1.8
PE-30AVF 22 8 3.8 62±2
 
Single grade
 
11/4
 
520 1150*800*1280
10 3.0
PE-40AVF 30 8 5.0
 
63±2 Single grade
 
11/4
 
550 1150*800*1280
10 4.4
PE-50AVF 37 8 6.8
 
63±2 Single grade
 
11/2
 
650 1300*1000*1450
10 5.4
PE-60AVF 45 8 8.0
 
65±2 Single grade
 
11/2
 
750 1300*1000*1450
10 6.8
PE-75AVF   8 9.7 65±2 Single grade
 
2 1200 1700*1270*1500
  10 8.6
PE-100AVF 75 8 13.2 65±2 Single grade
 
2 1350 1700*1270*1500
10 16.1

ENERGY-SAVING EFFECT OF TWO-STAGE COMPRESSION:

According to the engineering thermodynamics theory, it is the most economical for the compressor with isothermal compres-
sion.Two-stage oil-injection screw air compressor is designed based on the above theory, it fully improves the cooling function through oil injection during the two-stage compression, plus the inter-stage cooling, by ensuring the temperature is above the pressure dew point, it can be close to isothermal compression as possible, so as to achieve the energy-saving effect.
At the same time, due to low compression ratio of the two-stage airend, the “internal leakage”is largely reduced in the compression process compared with the single-stage compression airend with the same power and same discharge pressure.On the contrary, the diplacement is increased, which means that the efficiency is increased, and the specific power is reduced.
Compared with the ordinary two-stage permanent magnetic compressor on the market,Moair uses the two-drive and two-stage compres- sion, which directly avoids the power loss inside the gear set.
Energy-saving advantages:
1,To reduce the bearing load, and improve the volumetric efficincy;
2,In the case of partial load operation, it can improve efficiency and become energy saving to a better extent.
3,The energy saving of two-stage screw air compressor is up to 15%-25% than that of the one-stage air compressor, which can save the considerable electricity fees every year.

About shipping

Why choose us?

FAQ:

1.Q:What do you need machine and quotation?

A: According to capacity and factory size ,we can give you details.

2.Q: Are you trading company or manufacturer ?

A:We are factory.

3.Q:How do we pack machine?

  A:Exporting wooden cases

4.Q:Lead time

A:Around 25-30 days after the receipt of your deposit.

 

Type: High Pressure Gun
Usage: Paint Spray Gun, Washing Gun, Hopper Gun, Garden Gun
Working Style: Rotary Type
Air Wrench Type: Pulse pneumatic wrench
Pneumatic Drill Range: Tunnel
Degree of Automation: Automatic
Customization:
Available

|

air compressor

How are air compressors utilized in the aerospace industry?

Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:

1. Aircraft Systems:

Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.

2. Ground Support Equipment:

Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.

3. Component Testing:

Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.

4. Airborne Systems:

In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.

5. Environmental Control Systems:

Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.

6. Engine Testing:

In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.

7. Oxygen Systems:

In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.

It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.

air compressor

What is the energy efficiency of modern air compressors?

The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:

Variable Speed Drive (VSD) Technology:

Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.

Air Leakage Reduction:

Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.

Efficient Motor Design:

The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.

Optimized Control Systems:

Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.

Air Storage and Distribution:

Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.

Energy Management and Monitoring:

Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.

It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.

Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China Standard Best Price Quiet Rotary Screw Industrial Air Compressor for Factory   air compressor oilChina Standard Best Price Quiet Rotary Screw Industrial Air Compressor for Factory   air compressor oil
editor by CX 2023-10-30

China Hot selling Ultra Quiet 3.7kw 5HP 8bar 10bar 12bar Direct Drive Pm VSD Oilfree Scroll Type Air Compressor for Dental Lab arb air compressor

Product Description

8~12bar DIRECT-DRIVE OIL-FREE SCROLL AIR COMPRESSOR (PM VSD)
 

Precision air end(2 years warranty)
High precision, stiffness, and durable square air-end ensure max pressure 12bar.
IP67 protection level, F insulation level, Efficiency is improved 10%

PM motor & Variable frequency inverter
VSD soft no current impact. Inverter adjusts motor speed automatically, saving energy and long service life.

Direct drive
The motor is connected with the air-end directly, without THE belt, coupling, no need for adjustment, super low noise

Individual cooling fan
Low discharge compressed air temperature after cooled by an individual fan to ensure the low-pressure dew point.

Purity stainless steel air tank
Stainless Steel pipe and connection

Super quiet
Smart structure and advanced soundproof casing to reduce the noise to 49dB(A)

Intelligent PLC controller
Display operation situation of air-end
Remind maintenance timely

Product Parameters

 

Product Description

 

1. The orbiting scroll and fixed scroll housing are mated to create the compression chambers.
2. The continual movement of the orbiting scroll moves atmospheric air from the intake toward to the center, compressing the air into progressively smaller areas.
3. The continual movement of the orbiting scroll moves atmospheric air from the intake toward to the center, compressing the air into progressively smaller areas.
 

 

Hot Sale Products

 

 

 

           2~10bar Oil-injected                        7~16bar All-in-1                       Small Single-phase
       Screw Air Compressor                   Screw Air Compressor                 Screw Air Compressor  

 

         2~40bar 100% Oil-free                   8~12bar 100% Oil-free                Diesel Engine Portable
       Screw Air Compressor                   Scroll Air Compressor                 Screw Air Compressor  

 

 

Main Product

 

What we can supply:

* Oil-injected Screw Air Compressor (2~16 bar)
* All-in-1 Screw Air Compressor with Tank, Dryer, and Filters (7~16 bar)
* Single-phase Small Screw Air Compressor for Home use (8~10 bar)
* Water-injected Oil-free Screw Air Compressor (2~40 bar)
* Oil-free Scroll Air Compressor (8~12 bar)
* Diesel&Electric Engine Portable Screw Air Compressor (8~30 bar)
* Air Dryer, Air tank, Filters, and other Spare parts

After-sales Service: 24*7 Online Services and Video Guide
Warranty: 1 Year for The Whole Machine & 2 Years for Air End
Installation Type: Stationary Type
Lubrication Style: Oil-free
Noise: 49 dB(a)
Air Tank: Stainless Steel Material
Customization:
Available

|

air compressor

What are the differences between stationary and portable air compressors?

Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:

1. Mobility:

The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.

2. Power Source:

Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.

3. Tank Capacity:

Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.

4. Performance and Output:

The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.

5. Noise Level:

Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.

6. Price and Cost:

Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.

When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.

air compressor

What safety precautions should be taken when working with compressed air?

Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:

1. Personal Protective Equipment (PPE):

Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.

2. Compressed Air Storage:

Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.

3. Pressure Regulation:

Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.

4. Air Hose Inspection:

Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.

5. Air Blowguns:

Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.

6. Air Tool Safety:

Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.

7. Air Compressor Maintenance:

Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.

8. Training and Education:

Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.

9. Lockout/Tagout:

When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.

10. Proper Ventilation:

Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.

By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.

air compressor

Can air compressors be used for automotive applications?

Yes, air compressors can be used for various automotive applications and are commonly found in automotive repair shops, garages, and even in some vehicles. Here are some automotive applications where air compressors are frequently utilized:

1. Tire Inflation: Air compressors are commonly used to inflate tires in automotive applications. They provide a convenient and efficient way to inflate tires to the recommended pressure, ensuring optimal tire performance, fuel efficiency, and safety.

2. Air Tools: Air compressors power a wide range of pneumatic tools used in automotive repair and maintenance. These tools include impact wrenches, ratchet wrenches, air hammers, pneumatic drills, and sanders. Air-powered tools are favored for their high torque and power-to-weight ratio, making them suitable for heavy-duty automotive tasks.

3. Spray Painting: Air compressors are commonly used in automotive painting applications. They power airbrushes and spray guns that are used to apply paint, primer, and clear coats. Air compressors provide the necessary air pressure to atomize the paint and deliver a smooth and even finish.

4. Brake System Maintenance: Air compressors play a crucial role in maintaining and diagnosing automotive brake systems. They are used to pressurize the brake lines, allowing for proper bleeding of the system and detection of leaks or faults.

5. Suspension Systems: Some automotive suspension systems, such as air suspensions, rely on air compressors to maintain the desired air pressure in the suspension components. The compressor inflates or deflates the suspension as needed to provide a comfortable ride and optimal handling.

6. Cleaning and Dusting: Air compressors are used for cleaning automotive parts, blowing away dust and debris, and drying surfaces. They provide a high-pressure stream of air that effectively cleans hard-to-reach areas.

7. Air Conditioning Systems: Air compressors are a key component in automotive air conditioning systems. They compress and circulate refrigerant, allowing the system to cool and dehumidify the air inside the vehicle.

When using air compressors for automotive applications, it’s important to consider the specific requirements of the task at hand. Ensure that the air compressor has the necessary pressure and capacity to meet the demands of the application. Additionally, use appropriate air hoses, fittings, and tools that are compatible with the compressor’s output.

Overall, air compressors are versatile and valuable tools in the automotive industry, providing efficient power sources for a wide range of applications, from tire inflation to powering pneumatic tools and supporting various automotive systems.

China Hot selling Ultra Quiet 3.7kw 5HP 8bar 10bar 12bar Direct Drive Pm VSD Oilfree Scroll Type Air Compressor for Dental Lab   arb air compressorChina Hot selling Ultra Quiet 3.7kw 5HP 8bar 10bar 12bar Direct Drive Pm VSD Oilfree Scroll Type Air Compressor for Dental Lab   arb air compressor
editor by CX 2023-10-19