Product Description
Product Description
Scroll RefrigertionCompressor ZF11K4E-TFD-550
Refrigerant: R404/R22
Med Temperature
Large operating envelope
Fast temperature pull down capabilities
Light weight and compactness
Scroll Digital Technology for simple, step-less capacity modulation
Product Parameters
| Model No. | Nom HP | Displ. cc/rev | evaporating temperature: ° c | Nom current | weight(kgs) | ||||||
| -40 | -35 | -25 | -15 | -5 | 0 | 5 | |||||
| ZF06K4E TFD550 | 2 | 34 | 900 | 1134 | 1600 | 2450 | 3300 | 3960 | 4673 | 4.3 | 26 |
| ZF08K4E TFD550 | 2.5 | 41.9 | 1100 | 1433 | 2100 | 3150 | 4200 | 5040 | 5947 | 4.6 | 29 |
| ZF09K4E TFD550 | 3 | 46.4 | 1200 | 1500 | 2300 | 3300 | 4700 | 5600 | 6600 | 5.4 | 30 |
| ZF11K4E TFD550 | 3.5 | 57.5 | 1500 | 1800 | 2800 | 4100 | 5800 | 7000 | 8300 | 6.4 | 31 |
| ZF13K4E TFD551 | 4 | 67.8 | 1700 | 2100 | 3200 | 4800 | 6900 | 8200 | 9700 | 4.6 | 39 |
| ZF15K4E TFD551 | 5 | 83.3 | 2100 | 2600 | 3900 | 5800 | 8300 | 10000 | 11800 | 5.7 | 43 |
| ZF18K4E TFD551 | 6 | 98.8 | 250 | 3100 | 4800 | 6900 | 10000 | 12000 | 14200 | 8 | 43 |
| ZF24K4ETWD551 | 7.5 | 126 | 3060 | 3800 | 580 | 8500 | 12300 | 14700 | 17400 | 12.2 | 100 |
| ZF33K4ETWD551 | 10 | 166 | 4350 | 5300 | 8200 | 12200 | 17500 | 20800 | 24500 | 17 | 102 |
| ZF40K4ETWD551 | 13 | 204 | 5200 | 6400 | 10000 | 14800 | 21300 | 25500 | 35710 | 18.4 | 108 |
| ZF48K4ETWD551 | 15 | 244 | 6000 | 7400 | 11400 | 16900 | 24500 | 29300 | 34600 | 22.5 | 113 |
| nominal capacity: r404a Watts | |||||||||||
| r404a L/m/hBp compressors 415/3 | |||||||||||
Detailed Photos
Our Advantages
The compressors applied in the air conditioning industry in diverse applications including split systems, rooftops, packaged units and chillers, scroll compressors are now the most used compression technology replacing reciprocating and screw compressors due to its undeniable superiority. Several, fully CHINAMFG qualified, multiple compressor assemblies (tandem and trio) are available to be used in large capacity systems to deliver optimal comfort, low operating cost with higher seasonal efficiency.
Features and Benefits
• CHINAMFG Scroll axial and radial compliance for superior reliability and efficiency
• Wide scroll line-up • Low oil circulation rate • Superior liquid handling capability
• Low sound and vibration level • Low Total Equivalent Warming Impact
• CHINAMFG qualified tandem and trio configurations for superior seasonal efficiency
Q&A
Q&A:
1. What is the packaging and shipping method?
By Sea: Export wooden package,with refrigerant oil .
By Air: Full-sealed wooden package, without refrigerant oil.
2. What is your main compressor series (classification)?
– B(itzer compressors
– Scroll compressors: CR,VR, ZB ,ZR, Z(F,ZP SERIES
– Semi-hermetic compressors: DL,D2,D4,D6,D8 SERIES
– Performer compressors: SM, SZ, SH SERIES
– Commercial compressors: FR, SC SERIES
– Maneurop piston compressors:MT, MTZ, NTZ, MPZ SERIES
– Secop compressor, Carrier(Carlyle) compressor
– Hitachi compressor, CHINAMFG compressor
– Tecumseh compressor, LG compressor, CHINAMFG compressor
– Toshiba compressor, CHINAMFG compressor, Embraci Aspera compressor
– Also B)itzer, Carel, Dixell original valves, controls and selected parts
– TE, TDE, TGE, PHT SERIES TERMOSTATIC EXPANSION VALVES
– ETS SERIES EXPANSION VAVLES,
– EVR SERIES ECPANSION VAVLES AND
– KP1,KP5,KP15 SERIES PRESSURE CONTROLS
– DCL DML LIQUID LINE FILTER DRIERS
3.What is the term of payment?
T/T, Western Union
4.Which port does you ship from?
HangZhou.
5. How long is the warranty period for this product?
1 year
After Sales Service
Pre-sales: We provide assistance to our customers, provide valid information according to the requirements of our guests, answer questions, leave a professional impression, and lay the foundation for future sales.
Selling: let our customers know more about our products, and enthusiastically answering questions for customers and providing customers with a pleasant buying experience.
After-sales: After the products are sold, the professionals provide training services, check and maintain the products regularly, if there is problems for the quality,Will solve it for customers in time.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 1 Year |
| Installation Type: | Stationary Type |
| Lubrication Style: | Lubricated |
| Cylinder Position: | Vertical |
| Color: | Black |
| Customization: |
Available
|
|
|---|
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
Are there differences between single-stage and two-stage air compressors?
Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:
Compression Stages:
The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.
Compression Process:
In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.
Pressure Output:
The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.
Efficiency:
Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.
Intercooling:
Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.
Applications:
The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.
It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.
In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.
.webp)
How does an air compressor work?
An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:
1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.
2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.
3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.
4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.
5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.
6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.
Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.
In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.


editor by CX 2024-02-22
China manufacturer Oil-Free Scroll Air Compressor for Electric Loader Truck Vehicle air compressor CHINAMFG freight
Product Description
oil-free scroll air compressor for electric loader truck vehicle
Specifications
Characteristics of oil-free scroll air compressor for rail transit
Oil-free and safe: the compression chamber is completely isolated from the bearing, the compressed air is completely oil-free, and has passed the “0” oil-free certification of t Ü v
Simple maintenance: no wearing parts, long maintenance interval, and low maintenance cost
Firm and durable: the structure is firm and can withstand external vibration and impact. The operation of rail transit is more safe and reliable
High environmental adaptability
It can operate reliably under extreme climatic conditions from – 40 ºC to + 65 ºC
Mute: the oil-free scroll air compressor has small torque variation and no complex motion structure, so it has low noise and low vibration
RFQ:
1) MOQ
MOQ is 200pcs for customization. Stock mold can be lower quantity as your request.
2). Item of payment
a. T/T:40% deposit, 60% balance after passing QC inspected before shipping.
b. Paypal
c. Western Union
3). Samples?
If we have a stock sample, we’d like to send it to you immediately, If you need to make your own style, it will cause the sample charge, We will refundable the sample charge to you if your order quantity is up to 3000pcs.
4).sample time?
Depending on your request, as usual, It will take about 6-7 workdays to make the new sample as your need
5). Mass product time?
It takes about 23 days for 1000pcs.
6).freight charge for mass products?
It will base on your request, saying: small order, we’d like to advise you shipping by express will be favorable, You can choose by sea or Air, the freight charge will be based on the date when you place an order.
Our Services
1. QC workers will inspect each process 100%, Guarantee the quality.
2. After-sales service available.
3. OEM & ODM designer team available.
4. Professional knowledge of famous brand items.
5. Professional sales team, All of your emails will be replied with 12 hours
Company Information
HangZhou CHINAMFG industrial Co., Ltd is a professional vehicle HVAC/Compressor supplier in ZheJiang Province, China. We′re specializes in transport compressors such as electric vehicle air-conditioner scroll compressor, 12/24VDC electric compressor for truck additional air conditioner, compact horizontal hermetic scroll compressor for E-bus, subway, etc.
We also provide customers with vehicle air conditioning system solutions and products, such as a 12 / 24 VDC truck cab no idle air conditioning system, locomotive cab air conditioning system, RV air conditioning system, oil-free scroll air compressors, etc.
Our technical team has gained a good reputation in the field of electric vehicles, electric buses, and rail transit. Our products have surpassed their counterparts from the US and Japan in some special parameters, High efficiency, reliability, and compactness.
Our products are suitable for many different refrigerants, including R134A, R407C, R410A, ETC. Our annual output is 500, 000 PCS of EV-use semi-hermetic scroll compressors, 50, 000 PCS of hermetic horizontal inverter compressors.20000PCS of cab air conditioning.
We not only supply products but also provide comprehensive application guidance and technical support for our clients.
Our compressor driver is provided by our group company, which has many years of experience in automotive air conditioning control systems and mobile cold chain control systems. This is an advantage that other compressor companies do not have. The group has a number of R & D service institutions in Europe Company.
The business concept is Quality, Innovation, High-Efficiency, and Credit. Warmest welcome your visit. Looking CHINAMFG to working with you!
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 3 Years |
|---|---|
| Warranty: | 3 Years |
| Classification: | Variable Capacity |
| Job Classification: | Rotary Type |
| Transmission Power: | Dynamoelectric |
| Cooling Method: | Air-cooled |
| Customization: |
Available
|
|
|---|
.webp)
What are the differences between stationary and portable air compressors?
Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:
1. Mobility:
The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.
2. Power Source:
Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.
3. Tank Capacity:
Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.
4. Performance and Output:
The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.
5. Noise Level:
Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.
6. Price and Cost:
Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.
When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.
.webp)
Can air compressors be used for inflating tires and sporting equipment?
Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:
1. Tire Inflation:
Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.
2. Sporting Equipment Inflation:
Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.
3. Air Tools for Inflation:
Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.
4. Adjustable Pressure:
One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.
5. Efficiency and Speed:
Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.
6. Portable Air Compressors:
For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.
It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.
.webp)
Are there air compressors specifically designed for high-pressure applications?
Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:
1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.
2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.
3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.
4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:
- Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
- Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
- Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
- Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
- Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.
5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.
When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.
High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.


editor by CX 2024-02-22
China factory CHINAMFG CHINAMFG Scroll Parts Air Cooler Zr57kc Tfd 50Hz Refrigeration Compressor in Stock arb air compressor
Product Description
| A variety of brands on sale | A total of 19 brands are on sale | Different types of compressors |
Scroll refrigeration compressors are currently mainly in a fully enclosed structure, and are mainly used in air conditioners (heat pumps), heat pump hot water, refrigeration and other fields. The supporting downstream products include: household air conditioners, multi-split units, modular units, small water-to-ground source heat pumps, etc.
The advantages of our scroll compressors are
advantage:
1. There is no reciprocating mechanism, so the structure is simple, small in size, light in weight, less in parts (especially less in wearing parts), and high in reliability;
2. Small torque change, high balance, small vibration, stable operation, and small vibration of the whole machine;
3. It has high efficiency and frequency conversion speed regulation technology within the range of cooling capacity it adapts to;
4. The scroll compressor has no clearance volume and can maintain high volumetric efficiency operation
5. Low noise, good stability, high safety, relatively not easy to liquid shock.
Currently we sell various brands and types of compressors
Pecold refrigeration equipment is worth your choice /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Provide Online Services |
|---|---|
| Warranty: | Provide Online Services |
| Installation Type: | Other |
| Samples: |
US$ 1000/Piece
1 Piece(Min.Order) | Order Sample |
|---|
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What are the energy-saving technologies available for air compressors?
There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:
1. Variable Speed Drive (VSD) Compressors:
VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.
2. Energy-Efficient Motors:
The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.
3. Heat Recovery Systems:
Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.
4. Air Receiver Tanks:
Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.
5. System Control and Automation:
Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.
6. Leak Detection and Repair:
Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.
7. System Optimization and Maintenance:
Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.
By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.
.webp)
How do you troubleshoot common air compressor problems?
Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:
1. No Power:
- Check the power source and ensure the compressor is properly plugged in.
- Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
- Verify that the compressor’s power switch or control panel is turned on.
2. Low Air Pressure:
- Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
- Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
- Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.
3. Excessive Noise or Vibration:
- Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
- Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
- Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.
4. Air Leaks:
- Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
- Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
- Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.
5. Excessive Moisture in Compressed Air:
- Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
- Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
- Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.
6. Motor Overheating:
- Ensure the compressor’s cooling system is clean and unobstructed.
- Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
- Verify that the compressor is not being operated in an excessively hot environment.
- Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
- Consider using a thermal overload protector to prevent the motor from overheating.
If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.
.webp)
What are the safety considerations when operating an air compressor?
Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:
1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.
2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.
3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.
4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.
5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.
6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.
7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.
8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.
9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.
10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.
By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.


editor by CX 2024-02-21
China Hot selling Dkj-100 CHINAMFG Scroll Compressor, Piston Air Compressor, Compressor for Fridge supplier
Product Description
Overview
Quick Details
Place of Origin:
China
Brand Name:
Model Number:
DKJ-100
Type:
Refrigeration Compressor
Application:
Refrigeration Parts
Certification:
CE
Compressor type:
Semi-hermetic piston compressors
Color:
Black
Refrigerant:
R22
Cylinder count::
2
Displacement [m3/h]::
5.1
weight::
41kgs
Evaporating Temperature ::
High,Medium,Low
Power supply [V/~/Hz]::
380-420V/3/50Hz
Guarantee:
One year
Horse Power:
10HP
Packaging & Delivery
Packaging Details
By Sea:Export wooden package,with refrigerant oil
By Air :Full-sealed wooden package, without refrigerant oil.
Delivery Time
3days
Semi-hermetic Compressor DK Series all models
1,R-22,R134A,R404A/R507
2,Low price& High quality
3,Original:Germany
Type: Semi-hermetic piston compressors
Producer:
Series: DK
Model: DKJ-100
Technical data
| Cylinder count: | 2 | |
| Displacement [m³/h]: | 5,1 | |
| Weight [kg]: | 41 | |
| Oil charge [dm³]: | 0,6 | |
| Max. operating current [A]: | 3 | |
| Locked rotor current [A]: | 15,5 | |
| Power supply [V/~/Hz]: | 380-420V/3/50Hz |
Connections
| milimeters | inches | ||
| Suction line: | 5/8” | ||
| Discharge line: | 1/2” |
Standard equipment
- Rotalock valves
- oil sight glass
- motor protection
Optional equipment
- crankcase heater
- additional header cooling
Application
- high, medium and low temperatures
(R22 from 12,5 ºC to -50 ºC)
(R134a from 12,5 ºC to -20 ºC)
(R404A/R507 12,5 ºC to -50 ºC)
Capacity : R22
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online Support |
|---|---|
| Warranty: | Online Support |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Balanced Opposed Arrangement |
| Cylinder Position: | Angular |
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors employed in the petrochemical industry?
Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:
1. Instrumentation and Control Systems:
Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.
2. Pneumatic Tools and Equipment:
Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.
3. Process Air and Gas Supply:
Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.
4. Cooling and Ventilation:
Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.
5. Nitrogen Generation:
Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.
6. Instrument Air:
Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.
By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.
.webp)
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
.webp)
Can air compressors be used for automotive applications?
Yes, air compressors can be used for various automotive applications and are commonly found in automotive repair shops, garages, and even in some vehicles. Here are some automotive applications where air compressors are frequently utilized:
1. Tire Inflation: Air compressors are commonly used to inflate tires in automotive applications. They provide a convenient and efficient way to inflate tires to the recommended pressure, ensuring optimal tire performance, fuel efficiency, and safety.
2. Air Tools: Air compressors power a wide range of pneumatic tools used in automotive repair and maintenance. These tools include impact wrenches, ratchet wrenches, air hammers, pneumatic drills, and sanders. Air-powered tools are favored for their high torque and power-to-weight ratio, making them suitable for heavy-duty automotive tasks.
3. Spray Painting: Air compressors are commonly used in automotive painting applications. They power airbrushes and spray guns that are used to apply paint, primer, and clear coats. Air compressors provide the necessary air pressure to atomize the paint and deliver a smooth and even finish.
4. Brake System Maintenance: Air compressors play a crucial role in maintaining and diagnosing automotive brake systems. They are used to pressurize the brake lines, allowing for proper bleeding of the system and detection of leaks or faults.
5. Suspension Systems: Some automotive suspension systems, such as air suspensions, rely on air compressors to maintain the desired air pressure in the suspension components. The compressor inflates or deflates the suspension as needed to provide a comfortable ride and optimal handling.
6. Cleaning and Dusting: Air compressors are used for cleaning automotive parts, blowing away dust and debris, and drying surfaces. They provide a high-pressure stream of air that effectively cleans hard-to-reach areas.
7. Air Conditioning Systems: Air compressors are a key component in automotive air conditioning systems. They compress and circulate refrigerant, allowing the system to cool and dehumidify the air inside the vehicle.
When using air compressors for automotive applications, it’s important to consider the specific requirements of the task at hand. Ensure that the air compressor has the necessary pressure and capacity to meet the demands of the application. Additionally, use appropriate air hoses, fittings, and tools that are compatible with the compressor’s output.
Overall, air compressors are versatile and valuable tools in the automotive industry, providing efficient power sources for a wide range of applications, from tire inflation to powering pneumatic tools and supporting various automotive systems.


editor by CX 2024-02-20
China Professional Danfos Scroll Parts Air Cooler Refrigeration Compressor Danfos 50Hz R22 Single Hrm040u4 in Stock air compressor lowes
Product Description
| A variety of brands on sale |
|
Different types of compressors |
Scroll refrigeration compressors are currently mainly in a fully enclosed structure, and are mainly used in air conditioners (heat pumps), heat pump hot water, refrigeration and other fields. The supporting downstream products include: household air conditioners, multi-split units, modular units, small water-to-ground source heat pumps, etc.
The advantages of our scroll compressors are
advantage:
1. There is no reciprocating mechanism, so the structure is simple, small in size, light in weight, less in parts (especially less in wearing parts), and high in reliability;
2. Small torque change, high balance, small vibration, stable operation, and small vibration of the whole machine;
3. It has high efficiency and frequency conversion speed regulation technology within the range of cooling capacity it adapts to;
4. The scroll compressor has no clearance volume and can maintain high volumetric efficiency operation
5. Low noise, good stability, high safety, relatively not easy to liquid shock.
Currently we sell various brands and types of compressors
Pecold refrigeration equipment is worth your choice /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Provide Online Services |
|---|---|
| Warranty: | Provide Online Services |
| Installation Type: | Other |
| Samples: |
US$ 1000/Piece
1 Piece(Min.Order) | Order Sample |
|---|
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What is the impact of humidity on compressed air quality?
Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:
1. Corrosion:
High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.
2. Contaminant Carryover:
Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.
3. Decreased Efficiency of Pneumatic Systems:
Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.
4. Product Contamination:
In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.
5. Increased Maintenance Requirements:
Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.
6. Adverse Effects on Instrumentation:
Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.
To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.
.webp)
Are there differences between single-stage and two-stage air compressors?
Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:
Compression Stages:
The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.
Compression Process:
In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.
Pressure Output:
The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.
Efficiency:
Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.
Intercooling:
Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.
Applications:
The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.
It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.
In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.
.webp)
How does an air compressor work?
An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:
1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.
2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.
3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.
4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.
5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.
6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.
Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.
In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.


editor by CX 2024-02-18
China best Mtz56hl9ave Compressormtz56hl9ave 3HP 5HP 6HP 10HP Air Compressor Scroll with high quality
Product Description
| Hermetic piston compressor, MT/Z medium and high temperature compressor specifications | ||||||||
| Rated Performance R22,R407C-50HZ | ||||||||
| Model | Rated Performance* MT-R22 | Rated Performance** MTZ-R407C | ||||||
| Capacity(W) | Input Power (KW) | Input current(A) | COP (W/W) | Capacity(W) | Input Power (KW) | Input current(A) | COP (W/W) | |
| MT/MTZ 18 JA | 3881 | 1.45 | 2.73 | 2.68 | 3726 | 1.39 | 2.47 | 2.68 |
| MT/MTZ 22 JC | 5363 | 1.89 | 3.31 | 2.84 | 4777 | 1.81 | 3.31 | 2.64 |
| MT/MTZ 28 JE | 7378 | 2.55 | 4.56 | 2.89 | 6137 | 2.35 | 4.39 | 2.61 |
| MT/MTZ 32 JF | 8064 | 2.98 | 4.97 | 2.70 | 6941 | 2.67 | 5.03 | 2.60 |
| MT/MTZ 36 JG | 9272 | 3.37 | 5.77 | 27.5 | 7994 | 3.12 | 5.71 | 2.56 |
| MT/MTZ 40 JH | 1571 | 3.85 | 6.47 | 2.72 | 9128 | 3.61 | 6.45 | 2.53 |
| MT/MTZ 44 HJ | 11037 | 3.89 | 7.37 | 2.84 | 9867 | 3.63 | 6.49 | 2.72 |
| MT/MTZ 50 HK | 12324 | 4.32 | 8.46 | 2.85 | 11266 | 4.11 | 7.34 | 2.74 |
| MT/MTZ 56 HL | 13771 | 5.04 | 10.27 | 2.73 | 12944 | 4.69 | 8.36 | 2.76 |
| MT/MTZ 64 HM | 15820 | 5.66 | 9.54 | 2.79 | 14587 | 5.25 | 9.35 | 2.78 |
| MT/MTZ 72 HN | 17124 | 6.31 | 10.54 | 2.71 | 16380 | 5.97 | 10.48 | 2.74 |
| MT/MTZ 80 HP | 19534 | 7.13 | 11.58 | 2.74 | 18525 | 6.83 | 11.83 | 2.71 |
| MT/MTZ 100 HS | 23403 | 7.98 | 14.59 | 2.93 | 22111 | 7.85 | 13.58 | 2.82 |
| MT/MTZ 125 HU | 3571 | 10.66 | 17.37 | 2.85 | 29212 | 10.15 | 16.00 | 2.88 |
| MT/MTZ 144 HV | 34340 | 11.95 | 22.75 | 2.87 | 32934 | 11.57 | 18.46 | 2.85 |
| MT/MTZ 160 HW | 38273 | 13.39 | 22.16 | 2.86 | 37386 | 13.28 | 21.40 | 2.82 |
| MTM/MTZ200 HSS | 46807 | 15.97 | 29.19 | 2.93 | 43780 | 15.54 | 26.90 | 2.82 |
| MTM/MTZ250HUU | 6 0571 | 21.33 | 34.75 | 2.85 | 57839 | 20.09 | 31.69 | 2.88 |
| MTM/MTZ288 HVV | 68379 | 23.91 | 45.50 | 2.87 | 65225 | 22.92 | 36.56 | 2.85 |
| MTM/MTZ 320 HWW | 76547 | 26.79 | 44.32 | 2.86 | 74571 | 26.30 | 42.37 | 2.81 |
| Rated Performance*High Efficiency CompressorR22-50HZ | ||||
| Model | Capacity/(W) | Input Power (KW) | Inputcuprret/(A) | COP(W/W) |
| MT 45 HJ | 10786 | 3.62 | 6.86 | 2.98 |
| MT 51 HK | 12300 | 4.01 | 7.86 | 3.07 |
| MT 57 HL | 13711 | 4.54 | 9.24 | 3.02 |
| MT 65 HM | 15763 | 5.23 | 8.81 | 3.01 |
| MT 73 HN | 17863 | 5.98 | 9.99 | 2.99 |
| MT 81 HP | 25718 | 6.94 | 11.27 | 2.93 |
| R134a,R404A,R507-50Hz | ||||||||
| Model | Rated Performance* R134A | Rated Performance**R404A,R507-50HZ | ||||||
| Capacity(W) | Input Power (KW) | Input current(A) | COP (W/W) | Capacity(W) | Input Power (KW) | Input current(A) | COP (W/W) | |
| MT/MTZ 18 JA | 2553 | 0.99 | 2.19 | 2.58 | 1865 | 1.2 | 2.47 | 1.56 |
| MT/MTZ22 JC | 3352 | 1.20 | 2.51 | 2.80 | 2673 | 1.56 | 2.96 | 1.71 |
| MT/MTZ 28 JE | 4215 | 1.53 | 3.30 | 2.75 | 3343 | 1.95 | 3.80 | 1.72 |
| MT/MTZ 32 JF | 4951 | 1.87 | 3.94 | 2.65 | 3747 | 2.28 | 4.51 | 1.64 |
| MT/MTZ 36 JG | 6005 | 2.13 | 4.09 | 2.81 | 4371 | 2.66 | 4.91 | 1.64 |
| MT/MTZ 40 JH | 6398 | 2.33 | 4.89 | 2.74 | 4889 | 3.00 | 5.36 | 1.63 |
| MT/MTZ 44 HJ | 6867 | 2.52 | 5.65 | 2.72 | 5152 | 3.16 | 6.37 | 1.63 |
| MT/MTZ 50 HK | 8071 | 2.88 | 5.50 | 2.80 | 6152 | 3.61 | 6.53 | 1.70 |
| MT/MTZ 56 HL | 9069 | 3.21 | 5.83 | 2.82 | 7001 | 4.00 | 7.07 | 1.75 |
| MT/MTZ 64 HM | 1571 | 3.62 | 6.96 | 2.86 | 8132 | 4.54 | 8.30 | 1.79 |
| MT/MTZ 72 HP | 11853 | 4.01 | 7.20 | 2.96 | 9153 | 4.99 | 8.64 | 1.84 |
| MT/MTZ 80 HP | 13578 | 4.63 | 8.45 | 2.93 | 10524 | 5.84 | 10.12 | 1.80 |
| MT/MTZ 100 HS | 15529 | 5.28 | 10.24 | 2.94 | 12571 | 6.83 | 12.16 | 1.76 |
| MT/MTZ 125 HU | 19067 | 6.29 | 10.80 | 3.03 | 15714 | 8.53 | 13.85 | 1.84 |
| MT/MTZ 144 HV | 23620 | 7.83 | 13.78 | 3.02 | 18076 | 9.74 | 16.25 | 1.86 |
| MT/MTZ 160 HW | 25856 | 8.57 | 14.67 | 3.02 | 25713 | 11.00 | 17.94 | 1.84 |
| MTM/MTZ200 HSS | 3571 | 10.45 | 20.28 | 2.94 | 23800 | 13.53 | 24.06 | 1.76 |
| MTM/MTZ 250 HUU | 37746 | 12.45 | 21.38 | 3.03 | 31121 | 16.88 | 27.43 | 1.84 |
| MTM/MTZ288 HVV | 46773 | 15.49 | 27.29 | 3.02 | 35779 | 19.28 | 32.18 | 1.86 |
| MTM/MTZ 320 HWW | 51169 | 16.98 | 29.06 | 3.01 | 40093 | 21.76 | 35.51 | 1.84 |
| 50HZ DATA | |||||||||||
| Model | 50Hz | Nominal Cooling Capacity/Capacity | Input Power | COP | E.E.R. | c Displacement | Displacement | Injection flow | d Net.W | ||
| TR | W | Btu/h | KW | W/W | Btu/h/W | cm³/rev | m3/h | dm3 | kg | ||
| R22 Single | Sm084 | 7 | 20400 | 69600 | 6.12 | 3.33 | 11.4 | 114.5 | 19.92 | 3.3 | 64 |
| SM090 | 7.5 | 21800 | 74400 | 6.54 | 3.33 | 11.4 | 120.5 | 20.97 | 3.3 | 65 | |
| SM100 | 8 | 23100 | 79000 | 6.96 | 3.33 | 11.3 | 127.2 | 22.13 | 3.3 | 65 | |
| SM110 | 9 | 25900 | 88600 | 7.82 | 3.32 | 11.3 | 144.2 | 25.09 | 3.3 | 73 | |
| SM112 | 9.5 | 27600 | 94400 | 7.92 | 3.49 | 11.9 | 151.5 | 26.36 | 3.3 | 64 | |
| SM115 | 9.5 | 28000 | 95600 | 8.31 | 3.37 | 11.5 | 155.0 | 26.97 | 3.8 | 78 | |
| SM120 | 10 | 35710 | 157100 | 8.96 | 3.36 | 11.5 | 166.6 | 28.99 | 3.3 | 73 | |
| SM124 | 10 | 31200 | 106300 | 8.75 | 3.56 | 12.2 | 169.5 | 29.5 | 3.3 | 64 | |
| SM125 | 10 | 35710 | 157100 | 8.93 | 3.37 | 11.5 | 166.6 | 28.99 | 3.8 | 78 | |
| SM147 | 12 | 36000 | 123000 | 10.08 | 3.58 | 12.2 | 193.5 | 33.7 | 3.3 | 67 | |
| SM148 | 12 | 36100 | 123100 | 10.80 | 3.34 | 11.4 | 199.0 | 34.60 | 3.6 | 88 | |
| SM160 | 13 | 39100 | 133500 | 11.60 | 3.37 | 11.5 | 216.6 | 37.69 | 4.0 | 90 | |
| SM161 | 13 | 39000 | 133200 | 11.59 | 3.37 | 11.5 | 216.6 | 37.69 | 3.6 | 88 | |
| SM175 | 14 | 42000 | 143400 | 12.46 | 3.37 | 11.5 | 233.0 | 40.54 | 6.2 | 100 | |
| SM/SY185 | 15 | 45500 | 155300 | 13.62 | 3.34 | 11.4 | 249.9 | 43.48 | 6.2 | 100 | |
| SY240 | 20 | 61200 | 2 0571 0 | 18.20 | 3.36 | 11.5 | 347.8 | 60.50 | 8.0 | 150 | |
| SY300 | 25 | 78200 | 267000 | 22.83 | 3.43 | 11.7 | 437.5 | 76.10 | 8.0 | 157 | |
| SY380 | 30 | 94500 | 322700 | 27.4 | 3.46 | 11.8 | 531.2 | 92.40 | 8.4 | 158 | |
| R107C Single | SZ084 | 7 | 19300 | 66000 | 6.13 | 3.15 | 10.7 | 114.5 | 19.92 | 3.3 | 64 |
| SZ090 | 7.5 | 20400 | 69600 | 6.45 | 3.16 | 10.8 | 120.5 | 20.97 | 3.3 | 65 | |
| SZ100 | 8 | 21600 | 73700 | 6.84 | 3.15 | 10.8 | 127.2 | 22.13 | 3.3 | 65 | |
| SZ110 | 9 | 24600 | 84000 | 7.76 | 3.17 | 10.8 | 144.2 | 25.09 | 3.3 | 73 | |
| SZ115 | 9.5 | 26900 | 91700 | 8.49 | 3.16 | 10.8 | 155.0 | 26.97 | 3.8 | 78 | |
| SZ120 | 10 | 28600 | 97600 | 8.98 | 3.18 | 10.9 | 166.6 | 28.99 | 3.3 | 73 | |
| SZ125 | 10 | 28600 | 97500 | 8.95 | 3.19 | 10.9 | 166.6 | 28.99 | 3.8 | 78 | |
| SZ148 | 12 | 35100 | 119800 | 10.99 | 3.19 | 10.9 | 199.0 | 34.60 | 3.6 | 88 | |
| SZ160 | 13 | 38600 | 131800 | 11.77 | 3.28 | 11.2 | 216.6 | 37.69 | 4.0 | 90 | |
| SZ161 | 13 | 37900 | 129500 | 11.83 | 3.21 | 10.9 | 216.6 | 37.69 | 3.6 | 88 | |
| SZ175 | 14 | 45710 | 136900 | 12.67 | 3.17 | 10.8 | 233.0 | 40.54 | 6.2 | 100 | |
| SZ185 | 15 | 43100 | 147100 | 13.62 | 3.16 | 10.8 | 249.9 | 43.48 | 6.2 | 100 | |
| SZ240 | 20 | 59100 | 201800 | 18.60 | 3.18 | 10.9 | 347.8 | 60.50 | 8.0 | 150 | |
| SZ300 | 25 | 72800 | 248300 | 22.70 | 3.20 | 10.9 | 437.5 | 76.10 | 8.0 | 157 | |
| SZ380 | 30 | 89600 | 305900 | 27.60 | 3.25 | 11.1 | 431.2 | 92.40 | 8.4 | 158 | |
| Model | Nominal Cooling Capacity 60Hz | Nominal Cooling Capacity/Capacity | Input Power | maximum rated current | COP | Displacement | Displacement | Injection flow | Net.W | |||
| TR | W | Btu/h | kW | MCC | COP W/W EERBtu/h/W | cmVrev | m3/h | dm3 | kg | |||
| R22 | HRM032U4 | 2.7 | 7850 | 26790 | 2.55 | 9.5 | 3.08 | 10.5 | 43.8 | 7.6 | 1.06 | 31 |
| HRM034U4 | 2.8 | 8350 | 28490 | 2.66 | 9.5 | 3.14 | 10.5 | 46.2 | 8.03 | 1.06 | 31 | |
| HRM038U4 | 32 | 9240 | 31520 | 2.94 | 10.0 | 3.14 | 10.7 | 46.2 | 8.03 | 1.06 | 31 | |
| HRM040U4 | 3.3 | 9710 | 33120 | 2.98 | 10 | 3.26 | 11.1 | 54.4 | 9.47 | 1.06 | 31 | |
| HRM042U4 | 35 | 10190 | 34770 | 3.13 | 11.0 | 3.26 | 11.1 | 57.2 | 9.95 | 1.06 | 31 | |
| HRM045U4 | 3.8 | 10940 | 37310 | 3.45 | 12 | 3.17 | 10.8 | 61.5 | 10.69 | 1.33 | 31 | |
| HRM047U4 | 3.9 | 11500 | 39250 | 3.57 | 12.0 | 3.23 | 11.0 | 64.1 | 11.15 | 1.33 | 31 | |
| HRM048U4 | 4 | 11510 | 39270 | 3.57 | 12.5 | 3.23 | 11 | 64.4 | 11.21 | 1.57 | 37 | |
| HRM051T4 | 4.3 | 12390 | 44280 | 3.67 | 13.0 | 3.37 | 11.5 | 68.8 | 11.98 | 1.57 | 37 | |
| HRM051U4 | 4.3 | 12800 | 43690 | 3.83 | 13 | 3.34 | 11.4 | 68.8 | 11.98 | 1.57 | 37 | |
| HRM054U4 | 4.5 | 13390 | 45680 | 3.97 | 13.1 | 3.37 | 11.5 | 72.9 | 12.69 | 1.57 | 37 | |
| HRM058U4 | 4.8 | 14340 | 48930 | 4.25 | 15 | 3.37 | 11.5 | 78.2 | 13.6 | 1.57 | 37 | |
| HRM060T4 | 5.0 | 14570 | 49720 | 4.28 | 15.0 | 3.40 | 11.6 | 81.0 | 14.09 | 1.57 | 37 | |
| HRM060U4 | 5.0 | 14820 | 5 0571 | 4.4 | 15 | 3.37 | 11.5 | 81 | 14.09 | 1.57 | 37 | |
| HLM068T4 | 5.7 | 16880 | 57580 | 5.00 | 15.0 | 3.37 | 11.5 | 93.1 | 16.20 | 1.57 | 37 | |
| HLM072T4 | 6.0 | 17840 | 6 0571 | 5.29 | 15 | 3.37 | 11.5 | 98.7 | 17.2 | 1.57 | 37 | |
| HLM075T4 | 6.3 | 18430 | 62880 | 5.37 | 16.0 | 3.43 | 11.7 | 102.8 | 17.88 | 1.57 | 37 | |
| HLM081T4 | 6.8 | 19890 | 67880 | 5.8 | 17 | 3.43 | 11.7 | 110.9 | 19.3 | 1.57 | 37 | |
| HCM094T4 | 7.8 | 23060 | 78670 | 6.80 | 21.0 | 3.39 | 11.6 | 126.0 | 21.93 | 2.66 | 44 | |
| HCM109T4 | 9.1 | 26690 | 91070 | 7.77 | 24 | 3.43 | 11.7 | 148.8 | 25.89 | 2.66 | 44 | |
| HCM120T4 | 10.0 | 29130 | 99390 | 8.51 | 25.0 | 3.42 | 11.7 | 162.4 | 28.26 | 2.66 | 44 | |
| R407C | HRP034T4 | 2.8 | 7940 | 27080 | 2.68 | 9.5 | 2.96 | 10.1 | 46.2 | 8 | 1.06 | 31 |
| HRP038T4 | 3.2 | 8840 | 30150 | 2.82 | 11 | 3.14 | 10.7 | 51.6 | 8.98 | 1.06 | 31 | |
| HRP040T4 | 3.3 | 9110 | 31080 | 3.14 | 11.5 | 2.9 | 9.9 | 54.4 | 9.47 | 1.06 | 31 | |
| HRP042T4 | 3.5 | 9580 | 32680 | 3.3 | 10 | 2.9 | 9.9 | 57.2 | 9.95 | 1.06 | 31 | |
| HRP045T4 | 3.8 | 1571 | 36890 | 3.58 | 12 | 3.02 | 10.3 | 61.5 | 10.69 | 1.33 | 31 | |
| HRP047T4 | 3.9 | 11130 | 37980 | 3.69 | 12 | 3.02 | 10.3 | 64.1 | 11.15 1.33 | 31 | ||
| HRP048T4 | 4.0 | 11100 | 37880 | 3.35 | 12 | 3.31 | 11.3 | 64.4 | 1L21 | 1.57 | 37 | |
| HRP051T4 | 4.3 | 12120 | 41370 | 3.83 | 13 | 3.17 | 10.8 | 68.8 | 11.98 | 1.57 | 37 | |
| HRP054T4 | 4.5 | 12570 | 42880 | 3.97 | 12.5 | 3.17 | 10.8 | 72.8 | 12.66 | 1.57 | 37 | |
| HRP058T4 | 4.8 | 13470 | 45970 | 4.25 | 14.0 | 3.17 | 10.8 | 78.2 | 13.6 | 1.57 | 37 | |
| HRP060T4 | 5.0 | 13860 | 47280 | 4.26 | 15 | 3.25 | 11.1 | 81 | 14.09 | 1.57 | 37 | |
| HLP068T4 | 5.7 | 15700 | 53560 | 5.10 | 15.0 | 3.08 | 10.5 | 93.1 | 16.20 | 1.57 | 37 | |
| HLP072T4 | 6.0 | 16810 | 57350 | 5.16 | 15 | 3.26 | 11.1 | 98.7 | 17.17 | 1.57 | 37 | |
| HLP075T4 | 6.3 | 18040 | 61550 | 5.54 | 16.0 | 3.26 | 11-1 | 102.8 | 17.88 | 1.57 | 37 | |
| HLP081T4 | 6.8 | 18600 | 63470 | 5,66 | 17 | 3.28 | 11,2 | 110,9 | 19,30 | 1,57 | 37 | |
| HCP094T4 | 7.8 | 21590 | 73660 | 6.63 | 21.0 | 3.26 | 11.1 | 126.0 | 21.93 | 2.66 | 44 | |
| HCP109T4 | 9.1 | 25070 | 85550 | 7.77 | 24 | 3.23 | 11 | 148.8 | 25.89 | 2.66 | 44 | |
| HCP120T4 | 10.0 | 27370 | 93400 | 8.47 | 25.0 | 3.23 | 11.0 | 162.4 | 28.26 | 2.66 | 44 | |
| R410A | HRH571U4 | 2.4 | 7120 | 24310 | 2.43 | 10 | 2.93 | 10 | 27.8 | 4.84 | 1.06 | 31 |
| HRH031U4 | 26 | 7530 | 25710 | 2.67 | 10.0 | 2.82 | 9.62 | 29.8 | 5.19 | 1.06 | 31 | |
| HRH032U4 | 2.7 | 7670 | 26170 | 2.75 | 10 | 2.79 | 9.51 | 30.6 | 5.33 | 1.06 | 31 | |
| HRH034U4 | 2.8 | 8500 | 29000 | 2.90 | 10.0 | 2.93 | 10.0 | 33.3 | 5.75 | 1.06 | 31 | |
| HRH036U4 | 3 | 8820 | 30110 | 3.13 | 10 | 2.82 | 9.62 | 34.7 | 6.04 | 1.06 | 31 | |
| HRH038U4 | 3.2 | 9250 | 31560 | 3.35 | 12.0 | 2.76 | 9.41 | 36.5 | 6.36 | 1.06 | 32 | |
| HRH040U4 | 3.3 | 15710 | 34810 | 3.58 | 12 | 2.85 | 9.72 | 39.6 | 6.9 | 1.33 | 32 | |
| HRH041U4 | 3.3 | 10050 | 34300 | 3.43 | 12.5 | 2.93 | 10 | 39.3 | 6.8 | 1.57 | 37 | |
| HRH044U4 | 3.7 | 1 0571 | 36940 | 3.92 | 13.5 | 2.76 | 9.41 | 42.6 | 7.41 | 1.57 | 37 | |
| HRH049U4 | 4.1 | 12110 | 41320 | 4.04 | 13.5 | 2.99 | 10.22 | 47.4 | 8.24 | 1.57 | 37 | |
| HRH051U4 | 4.3 | 12860 | 43890 | 4.21 | 13 | 3.05 | 10.42 | 49.3 | 5.58 | 1.57 | 37 | |
| HRH054U4 | 4.5 | 13340 | 45510 | 4.41 | 15.0 | 3.02 | 10.32 | 52.1 | 9.07 | 1.57 | 37 | |
| HRH056U4 | 4.7 | 13830 | 47200 | 4.58 | 15 | 3.02 | 1031 | 54.1 | 9.42 | 1.57 | 37 | |
| HLH061T4 | 5.1 | 15210 | 51880 | 4.89 | 15.0 | 3.11 | 1061 | 57.8 | 10.10 | 1.57 | 37 | |
| HLH068T4 | 5.7 | 16880 | 57610 | 5.26 | 19 | 3.21 | 1096 | 64.4 | 11.21 | 1.57 | 37 | |
| HLJ072T4 | 6.0 | 17840 | 60900 | 5.56 | 19.0 | 3.21 | 11.0 | 68.0 | 11.82 | 1.57 | 37 | |
| HLJ075T4 | 6.3 | 18600 | 63490 | 5.77 | 18 | 3.22 | 11 | 70.8 | 12.32 | 1.57 | 37 | |
| HLJ083T4 | 6.9 | 20420 | 69690 | 6.28 | 19.0 | 3.25 | Hl | 78.1 | 13.59 | 1.57 | 37 | |
| HCJ090T4 | 7.5 | 22320 | 76190 | 7.19 | 19 | 3.11 | 10.6 | 86.9 | 15.11 | 2.66 | 44 | |
| HCJ105T4 | 8.8 | 26100 | 89090 | 8.25 | 25.0 | 3.16 | 10.8 | 101.6 | 17.68 | 2.66 | 44 | |
| HCJ120T4 | 10 | 29610 | 157180 | 9.53 | 27 | 3.11 | 10.6 | 116.4 | 20.24 | 2.66 | 44 | |
| Model | HP | Voltage | ||||||
| MLM019T5LP9 | 2.5 | 220-240V-1-50HZ | ||||||
| MLM571T5LP9 | 3 | 220-240V-1-50HZ | ||||||
| MLM026T5LP9 | 3.5 | 220-240V-1-50HZ | ||||||
| MLM015T4LP9 | 2 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM019T4LP9 | 2.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM571T4LP9 | 3 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM026T4LP9 | 3.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM030T4LC9 | 4 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM038T4LC9 | 5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM045T4LC9 | 6 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM048T4LC9 | 7 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM058T4LC9 | 7.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM066T4LC9 | 9 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM076T4LC9 | 10 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| *MLM series general-purpose lubricating oil is AB alkyl benzene oil, the refrigerant is R22. | ||||||||
| Model | HP | Voltage | ||||||
| MLZ019T5LP9 | 2.5 | 220-240V-1-50HZ | ||||||
| MLZ571T5LP9 | 3 | 220-240V-1-50HZ | ||||||
| MLZ026T5LP9 | 3.5 | 220-240V-1-50HZ | ||||||
| MLZ015T4LP9 | 2 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ019T4LP9 | 2.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ571T4LP9 | 3 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ026T4LP9 | 3.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ030T4LC9 | 4 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ038T4LC9 | 5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ045T4LC9 | 6 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ048T4LC9 | 7 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ058T4LC9 | 7.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ066T4LC9 | 9 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ076T4LC9 | 10 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| *MLM series general-purpose lubricating oil is PVE ugly oil, refrigerant R404A/R134A/R507/R22 | ||||||||
Archean refrigeration has been focusing on the refrigeration industry for more than 10 years. The compressors are sold all over the world and have been well received. The company has accumulated strong experience in the compressor market, rich technical support, and a satisfactory one-stop procurement solution. You can rest assured You don’t need to worry about this series, from placing an order to receiving the goods. We provide a complete solution to serve customers well, which is our purpose of hospitality.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Installation Type: | Movable Type |
|---|---|
| Lubrication Style: | Lubricated |
| Cylinder Position: | Vertical |
| Model: | Mtz56hl9ave |
| Samples: |
US$ 100/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
How are air compressors used in refrigeration and HVAC systems?
Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:
1. Refrigerant Compression:
In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.
2. Refrigeration Cycle:
The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.
3. HVAC Cooling and Heating:
In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.
4. Air Conditioning:
Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.
5. Compressor Types:
Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.
6. Energy Efficiency:
Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.
By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.
.webp)
How do you choose the right size of air compressor for your needs?
Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:
1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.
2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.
3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.
4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.
5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.
6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.
7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.
8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.
By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.


editor by CX 2024-02-14
China high quality Scroll Compressor for Air Condition Sh184A4alc air compressor lowes
Product Description
Product Description
Feature:
Patent design
Gas circulation, motor cooling and oil lubrication are all improved through the new patented design of the motor hood.
Air inlet design
Air intake design increases resistance to liquid attack and the new PTFE elastic seal reduces leakage.
Increase of service life
Protection and assembly of components reduce internal leakage and increase service life.
Low noise
Improvements in component isolation have greatly reduced noise.The heat shield reduces heat transfer and noise between exhaust and inhalation.
Product Parameters
| Model | Refrigerant | Power | Net Weight | |
| SZ100-3/9VM | R134A/R407C | 8HP | 72KG | |
| SZ110-3/9Vm | R134A/R407C | 9HP | 72KG | |
| SZ120-3/9VM | R134A/R407C | 10HP | 80KG | |
| SZ125-3RM | R134A/R407C | 10HP | 80KG | |
| SZ148-3/9VAM | R134A/R407C | 12HP | 86KG | |
| SZ161-T3/9VC | R134A/R407C | 13HP | 86KG | |
| SZ/Y185-3/9CAM | R134A/R407C | 15HP | 103KG | |
| SZ240A3/9CBM | R134A/R407C | 20HP | 160KG | |
| SZ300A3/9CBM | R134A/R407C | 25HP | 160KG | |
| SM084-4VM | R22 | 7HP | 72KG | |
| SM090-4VM | R22 | 7.5HP | 72KG | |
| SM100-4VM | R22 | 8HP | 72KG | |
| SM110-4VM | R22 | 9HP | 80KG | |
| SM112A4ACB | R22 | 9HP | 80KG | |
| SM115-4CAM | R22 | 9.5HP | 80KG | |
| SM120-4VM | R22 | 10HP | 80KG | |
| SM148-4VAM | R22 | 12HP | 86KG | |
| SM125-4CAM | R22 | 10HP | 80KG | |
| SM124A4ACB | R22 | 10HP | 80KG | |
| SM147A4ACB | R22 | 12HP | 86KG | |
| SM161-4VAM | R22 | 13HP | 86KG | |
| SM160-4CBM | R22 | 13HP | 93KG | |
| SM175-4CAM | R22 | 14HP | 103KG | |
| SM175-4RM | R22 | 14HP | 103KG | |
| SM185-4CAM | R22 | 15HP | 103KG | |
| SM185-4RM | R22 | 15HP | 103KG | |
| SY240A4CBM | R22 | 20HP | 160KG | |
| SY300ACBM | R22 | 25HP | 160KG | |
| SY300A4CAM | R22 | 25HP | 160KG | |
| SY380A4CBM | R22 | 31HP | 225KG | |
Detailed Photos
Q&A
Q&A:
1. What is the packaging and shipping method?
By Sea: Export wooden package,with refrigerant oil .
By Air: Full-sealed wooden package, without refrigerant oil.
2. What is your main compressor series (classification)?
– B(itzer compressors
– Scroll compressors: CR,VR, ZB ,ZR, Z(F,ZP SERIES
– Semi-hermetic compressors: DL,D2,D4,D6,D8 SERIES
– Performer compressors: SM, SZ, SH SERIES
– Commercial compressors: FR, SC SERIES
– Maneurop piston compressors:MT, MTZ, NTZ, MPZ SERIES
– Secop compressor, Carrier(Carlyle) compressor
– Hitachi compressor, CHINAMFG compressor
– Tecumseh compressor, LG compressor, CHINAMFG compressor
– Toshiba compressor, CHINAMFG compressor, Embraci Aspera compressor
– Also B)itzer, Carel, Dixell original valves, controls and selected parts
– TE, TDE, TGE, PHT SERIES TERMOSTATIC EXPANSION VALVES
– ETS SERIES EXPANSION VAVLES,
– EVR SERIES ECPANSION VAVLES AND
– KP1,KP5,KP15 SERIES PRESSURE CONTROLS
– DCL DML LIQUID LINE FILTER DRIERS
3.What is the term of payment?
T/T, Western Union
4.Which port does you ship from?
HangZhou.
5. How long is the warranty period for this product?
1 year
After Sales Service
Pre-sales: We provide assistance to our customers, provide valid information according to the requirements of our guests, answer questions, leave a professional impression, and lay the foundation for future sales.
Selling: let our customers know more about our products, and enthusiastically answering questions for customers and providing customers with a pleasant buying experience.
After-sales: After the products are sold, the professionals provide training services, check and maintain the products regularly, if there is problems for the quality,Will solve it for customers in time.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 1 Year |
| Installation Type: | Stationary Type |
| Lubrication Style: | Lubricated |
| Cylinder Position: | Vertical |
| Color: | Blue |
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for shipbuilding and maritime applications?
Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:
1. Pneumatic Tools and Equipment:
Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.
2. Painting and Surface Preparation:
Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.
3. Pneumatic Actuation and Controls:
Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.
4. Air Start Systems:
In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.
5. Pneumatic Conveying and Material Handling:
In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.
6. Air Conditioning and Ventilation:
Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.
These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.
.webp)
How are air compressors used in refrigeration and HVAC systems?
Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:
1. Refrigerant Compression:
In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.
2. Refrigeration Cycle:
The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.
3. HVAC Cooling and Heating:
In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.
4. Air Conditioning:
Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.
5. Compressor Types:
Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.
6. Energy Efficiency:
Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.
By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.
.webp)
How do you choose the right size of air compressor for your needs?
Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:
1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.
2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.
3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.
4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.
5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.
6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.
7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.
8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.
By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.


editor by CX 2024-02-06
China Standard 5HP Scroll Type Oilless Air Compressor wholesaler
Product Description
| Model | HK-D04/08-A4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Operation control mode | Pressure start and stop | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Rated pressure (MPa) | 0.8 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Maximum pressure ( MPa) | 1.0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Air flow (M³/min) | 0.4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Running speed ( R/min) | 3200 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Drive mode | Belt drive | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Exhaust air temperature ( ºC ) | ≤ambient temperature /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
How are air compressors utilized in pharmaceutical manufacturing?Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing: 1. Manufacturing Processes: Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals. 2. Instrumentation and Control Systems: Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms. 3. Packaging and Filling: Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance. 4. Cleanroom Environments: Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination. 5. Laboratory Applications: In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research. 6. HVAC Systems: Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas. By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.
What safety precautions should be taken when working with compressed air?Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider: 1. Personal Protective Equipment (PPE): Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards. 2. Compressed Air Storage: Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained. 3. Pressure Regulation: Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure. 4. Air Hose Inspection: Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure. 5. Air Blowguns: Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials. 6. Air Tool Safety: Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts. 7. Air Compressor Maintenance: Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor. 8. Training and Education: Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace. 9. Lockout/Tagout: When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system. 10. Proper Ventilation: Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment. By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.
Are there portable air compressors available for home use?Yes, there are portable air compressors specifically designed for home use. These portable models offer convenience, versatility, and ease of use for various tasks around the house. Here are some key points about portable air compressors for home use: 1. Compact and Lightweight: Portable air compressors are typically compact and lightweight, making them easy to transport and store. They are designed with portability in mind, allowing homeowners to move them around the house or take them to different locations as needed. 2. Electric-Powered: Most portable air compressors for home use are electric-powered. They can be plugged into a standard household electrical outlet, eliminating the need for gasoline or other fuel sources. This makes them suitable for indoor use without concerns about emissions or ventilation. 3. Versatile Applications: Portable air compressors can be used for a wide range of home applications. They are commonly used for inflating tires, sports equipment, and inflatable toys. They are also handy for operating pneumatic tools such as nail guns, staplers, and paint sprayers. Additionally, portable air compressors can be used for cleaning tasks, powering airbrushes, and other light-duty tasks around the house. 4. Pressure and Capacity: Portable air compressors for home use typically have lower pressure and capacity ratings compared to larger industrial or commercial models. They are designed to meet the needs of common household tasks rather than heavy-duty applications. The pressure and capacity of these compressors are usually sufficient for most home users. 5. Oil-Free Operation: Many portable air compressors for home use feature oil-free operation. This means they do not require regular oil changes or maintenance, making them more user-friendly and hassle-free for homeowners. 6. Noise Level: Portable air compressors designed for home use often prioritize low noise levels. They are engineered to operate quietly, reducing noise disturbances in residential environments. 7. Cost: Portable air compressors for home use are generally more affordable compared to larger, industrial-grade compressors. They offer a cost-effective solution for homeowners who require occasional or light-duty compressed air applications. When considering a portable air compressor for home use, it’s important to assess your specific needs and tasks. Determine the required pressure, capacity, and features that align with your intended applications. Additionally, consider factors such as portability, noise level, and budget to choose a suitable model that meets your requirements. Overall, portable air compressors provide a practical and accessible compressed air solution for homeowners, allowing them to tackle a variety of tasks efficiently and conveniently within a home setting.
China supplier 5HP CHINAMFG Scroll Hermetic Compressor Zr61kc-Tfd-420 for Air Condition air compressor lowesProduct Description
Product Description
Copeland Reciprocating Compressor Description Copeland scoll compressors are dependable, cost-effective and versatile. A wide spectrum of operating ranges and hundreds of available models make these compressors an optimal selection for every refrigeration need.
Key Features Optimized for freezers, vending machines, display cases, reach-ins, ice machines, and more. Designed for low temperature refrigeration applications and addresses future challenges of refrigeration. Provides unmatched benefits for extended medium temperature refrigeration applications.
Xihu (West Lake) Dis.r Technologies is a global supplier and marketer of CHINAMFG maintenance and compressor solutions for commercial and residential air conditioning,heating,ventilation and refrigeration field, manufacturing and other industrial applications. Core Markets Served: Certification: Packing and Delivery FAQ 1. How long have you been in this field and where is your company? 2. What are your main catagories? 3.Can you offer us quality product at the best price? 4.What is the term of payment? 5.How about the MOQ? 6. Cooperative Partners? Contact Us HangZhou Xihu (West Lake) Dis.r Technologies Co.,Ltd. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
What are the advantages of using an air compressor in construction?Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:
It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings. In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.
Can air compressors be used for inflating tires and sporting equipment?Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes: 1. Tire Inflation: Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires. 2. Sporting Equipment Inflation: Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation. 3. Air Tools for Inflation: Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks. 4. Adjustable Pressure: One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety. 5. Efficiency and Speed: Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually. 6. Portable Air Compressors: For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply. It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.
In which industries are air compressors widely used?Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed: 1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators. 2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists. 3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes. 4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems. 5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage. 6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging. 7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing. 8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment. 9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes. These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.
China Custom 3.7kw Silent Oil-Free Scroll Air Compressor for Chemical of Low Niose supplierProduct Description
|
.webp)
.webp)
.webp)
.webp)
.webp)
.webp)